Evaluating Policy Counterfactuals: A "VAR-Plus" Approach Caravello, McKay and Wolf

Discussion by Diego Känzig
Northwestern University, CEPR \& NBER

NBER Monetary Economics Program Meeting, Spring 2024

A menu of research strategies in macro

Kaplan-Moll-Violante 2018
 Hazell-Herreño-
 Kaplan-Moll-Violante 2018 Nakamura-Steinsson 2022 Baumeister-Hamilton 2015 Romer-Romer 2004
 Structural Modeling
 Reduced-form Identification

Pros:

- Disciplined with micro data
- Mechanisms transparent
- Counterfactuals

Pros:

- Agnostic about structure of economy
- Robust to model uncertainty

Cons:

- Misspecification
- Calibration challenging

Cons:

- Identification challenging
- Limited set of experiments

A menu of research strategies in macro

Hazell-Herreño-
 Kaplan-Moll-Violante 2018
 Structural Modeling
 Caravello-McKay-Wolf 2024
 Reduced-form Identification

Pros:

- Disciplined with micro data
- Mechanisms transparent
- Counterfactuals

Cons:

- Misspecification
- Calibration challenging

Pros:

- Agnostic about structure of economy
- Robust to model uncertainty

Cons:

- Identification challenging
- Limited set of experiments

The approach in a nutshell

- How to study policy counterfactuals, imposing as little structure as possible?
- Sufficient statistic approach, combining

1. Reduced-form projections
2. Policy causal effects

- Key challenge: Estimating causal effects of different policies e.g. transitory or more persistent monetary shocks
- Impose some structure to extrapolate policy effects

Framework

- Impulse propagation paradigm:

$$
y_{t}=\sum_{\ell=0}^{\infty} \Theta_{\ell} \varepsilon_{t-\ell}, \quad \text { where } \varepsilon_{t} \text { are structural shocks driving the economy }
$$

- IRFs Θ_{ℓ} are solutions of linear, perfect-foresight, inf-horizon economy:

$$
\begin{aligned}
\mathcal{H}_{x} \boldsymbol{x}+\mathcal{H}_{z} \boldsymbol{z}+\mathcal{H}_{e} e_{0} & =\mathbf{0} \\
\mathcal{A}_{x} \boldsymbol{x}+\mathcal{A}_{z} z+\mathcal{A}_{v} v_{0} & =\mathbf{0}
\end{aligned}
$$

- where $y_{t}=\left(x_{t}^{\prime}, z_{t}^{\prime}\right)^{\prime}$ is partitioned into endogenous variables x_{t} and policy variables z_{t}, and $\varepsilon_{t}=\left(e_{t}^{\prime}, v_{t}^{\prime}\right)^{\prime}$ consists of structural shocks e_{t} and policy shocks v_{t}
- $\left\{\mathcal{H}_{x}, \mathcal{H}_{z}, \mathcal{H}_{e}\right\}$ and $\left\{\mathcal{A}_{x}, \mathcal{A}_{z}, \mathcal{A}_{v}\right\}$ are sequence-space Jacobians for private-sector and policy block (Auclert et al., 2021)

Counterfactuals

- Aim is to study evolution of the economy if policy was set based on a different rule

$$
\tilde{\mathcal{A}}_{x} \boldsymbol{x}+\tilde{\mathcal{A}}_{z} z=\mathbf{0}
$$

- y_{t} under the counterfactual policy follows a counterfactual SVMA

$$
\tilde{y}_{t}=\sum_{\ell=0}^{\infty} \tilde{\Theta}_{\ell} \varepsilon_{t-\ell}
$$

- How to get $\tilde{\Theta}_{\ell}$ and \tilde{y}_{t} ?
- Idea: Pick policy shocks $\boldsymbol{\nu}$ that impose the new rule
- Under invertibility suffices to back out \tilde{y}_{t}

Operationalization

- Challenge in practice: we do not observe all policy shocks
- Credible estimates $\hat{\theta}_{\nu}$ available for some (e.g. high-frequency or narrative MP shocks), but not entire policy menu Θ_{ν}
- Idea: Use available evidence to discipline suite of candidate structural models via impulse response matching
- Use estimated models to extrapolate policy causal effects and get posterior distribution of Θ_{ν}

First assessment

- Very cool paper!
- Extremely useful tool for applied researchers interested in performing policy counterfactuals
- Does not require to fully specifying the structure of the economy
- Robust to Lucas critique
- Let's see it at work

Revisiting the Great Inflation

- 1970's and early 1980's were characterized by poor economic performance
- To what extent monetary policy played a role in these episodes?
- Could tighter monetary policy have prevented the stark rise in inflation?
- And if so, at what cost?
- Classic question, see e.g. Primiceri (2005)
- Study counterfactual economic performance, imposing monetary rule under Greenspan throughout the 1970s
- Does not make much of a difference, higher variance of non-policy shocks more important

Revisiting the Great Inflation

- But maybe Greenspan was not enough of a hawk ...
- Could the Bundesbank have prevented the Great Inflation in the US?
- Bundesbank commonly perceived as the inflation hawk
- near-universally credited for preventing the Great Inflation in West Germany
- see also Benati (2011)

Revisiting the Great Inflation

Monetary policy in the US and West Germany

- I estimate simple monetary VARs in output gap, inflation and policy rates for West Germany and the US

$$
A_{0} y_{t}=A(L) y_{t-1}+\varepsilon_{t}
$$

- Use non-policy shocks as instruments for simple Taylor rule (estimated using GMM)

$$
i_{t}=\rho i_{t-1}+(1-\rho)\left(\phi_{\pi} \pi_{t}+\phi_{y} y_{t}\right)
$$

Monetary policy in the US and West Germany

- I estimate simple monetary VARs in output gap, inflation and policy rates for West Germany and the US

$$
A_{0} y_{t}=A(L) y_{t-1}+\varepsilon_{t}
$$

- Use non-policy shocks as instruments for simple Taylor rule (estimated using GMM)

$$
i_{t}=\rho i_{t-1}+(1-\rho)\left(\phi_{\pi} \pi_{t}+\phi_{y} y_{t}\right)
$$

- Results:

Country/Parameter	ϕ_{π}	ϕ_{y}	ρ
Germany	1.94	-0.16	0.77
United States	1.62	1.35	0.82

A simple counterfactual

- A "simple" way of doing the counterfactual is just to replace the interest rate equation in the SVAR for the US with the German equation

$$
\binom{a_{0,1: 2}}{\tilde{a}_{0,3}} y_{t}=\binom{a_{1,1: 2}}{\tilde{a}_{1,3}} y_{t-1}+\ldots+\binom{a_{p, 1: 2}}{\tilde{a}_{p, 3}} y_{t-p}+\varepsilon_{t}
$$

- Similar to exercise in Primiceri (2005)
- How does this look?

A simple counterfactual

A simple counterfactual

- Imposing monetary rule from Bundesbank like this does not make much of a difference
- Slightly lowers inflation in some periods, but in others even increases it
- In line with findings in Primiceri (2005) and Benati (2011)
- Key problem: Lucas critique
- Changing policy rule will affect behavior of private sector, and thus all coefficients in VAR possibly change

Using the CMW approach

- Now let's do it using the CMW approach
- Impose Taylor rule, using the coefficients estimated for Germany

$$
i_{t}=0.77 i_{t-1}+(1-0.77)\left(1.94 \pi_{t}-0.16 y_{t}\right)
$$

- How? As in CMW, impose corresponding $\tilde{\mathcal{A}}_{x}, \tilde{\mathcal{A}}_{z}$ using
- reduced-form projections from medium-scale VAR
- extrapolated monetary policy shocks from four models:
- RANK \& HANK
- Behavioral RANK \& HANK
- Do things look any different?

Could the Bundesbank have prevented the Great Inflation?

Could the Bundesbank have prevented the Great Inflation?

- Different conclusion!
- Bundesbank rule would have significantly reduced US inflation in the 70s
- However, comes at a substantial economic cost
- Fall in output gap in mid-70s almost a third larger
- What about optimal monetary policy?
- Mimimize quadratic objective $\mathcal{L}=\mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left\{\lambda_{\pi} \pi_{t}^{2}+\lambda_{y} y_{t}^{2}+\lambda_{i}\left(i_{t}-i_{t-1}\right)^{2}\right\}\right]$

Optimal monetary policy

Optimal monetary policy

- Optimal monetary policy seems to be far from standard Taylor rule
- Manages to achieve lower inflation and more stable output gap
- Role of expectations? Likely a variant of the forward guidance puzzle (Del Negro, Giannoni, and Patterson, 2012)
- Pricing block of models to extrapolate policy effects extremely forward-looking
- Crucial how to extrapolate forward guidance shocks
- Focus on models that are not subject to this extreme foresight

Comment \#1: Invertibility

- Invertibility is key for the approach to work
- Authors use a medium-scale VAR (10 variables) to estimate the Wold coefficients
- But only 3 variable VAR for estimating the impulse responses to monetary policy shocks
- Why not use same model to estimate both these objects?
- I would suggest using a large-scale Bayesian VAR or a FAVAR to incorporate an information set as large as possible for both steps
- This would also help if one wants to take estimation uncertainty in these objects into account

Comment \#2: Fiscal and monetary policy interactions

- How should we think about interactions between policies, e.g. fiscal-monetary policy interactions?
- Fiscal policy rule is calibrated and fixed, so essentially part of non-policy block
- What if fiscal policy depends on monetary rule? Does that invalidate the counterfactual?
- Seems crucial since many fiscal-monetary policy interrelations in practice
- Great paper with important methodological contribution and interesting applications
- Advances how to robustly extrapolate estimated policy causal effects
- Makes semi-structural methods applicable to a wider set of applications

Thank you!

