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Abstract

This paper examines the relationship between green innovation and the business cy-

cle, revealing that while non-green innovation is procyclical, green innovation is coun-

tercyclical. This pattern holds unconditionally over the business cycle and conditional

on economic shocks. Motivated by these findings, we develop a business cycle model

with endogenous green and non-green innovation to explain their distinct cyclical be-

havior. The key mechanism operates through a ‘green is in the future’ channel: green

patents are expected to generate higher profits in the future, making green patent-

ing less sensitive to short-term economic fluctuations. In general equilibrium, this

channel is reinforced, making green and non-green innovation effective substitutes.

We provide direct evidence supporting the model mechanism using data on market-

implied values of green and non-green patents.
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1. Introduction

Climate change is the defining challenge of our time, posing severe threats to lives, liveli-
hoods, ecosystems, and the global economy. Carbon pricing remains a central tool for
mitigation, but its distributional impacts have sparked public resistance, as higher energy
costs weigh disproportionately on low-income households and carbon-intensive indus-
tries. Against this backdrop, green innovation is key for a successful transition, enabling
emissions reductions while sustaining economic growth. Yet recent global shocks, such as
the COVID-19 pandemic and subsequent recession, have raised concerns that economic
downturns may stall the green transition by tightening financial constraints or shifting
firms’ innovation priorities. Understanding how green innovation responds to the busi-
ness cycle is therefore critical.

This paper provides an anatomy of the cyclicality of innovation, with a focus on green
and non-green technologies. We define green innovation as the development of clean
technologies that replace or reduce reliance on existing carbon-intensive ones. Based on
the universe of patents filed in the United States, we document a striking pattern: while
overall patenting activity tends to be procyclical, green and non-green innovation follow
markedly different cyclical patterns. Specifically, while non-green patenting moves in
tandem with the business cycle, decreasing during economic downturns, green patent-
ing is countercyclical: it actually increases during economic contractions. As a result, the
share of green patents rises during recessions—but notably, we also find evidence that the
absolute number of green patents increases.

To establish these patterns, we examine the dynamics of patent applications—both
unconditionally over the business cycle and conditional on macroeconomic shocks. For
the former, we analyze the dynamic correlations of the number of patent applications with
business cycle shocks, measured as innovations to output that cannot be forecasted using
past macroeconomic variables. For the latter, we estimate the dynamic causal effects of
monetary policy shocks on patenting. We think of monetary policy shocks as a stand-in
for a well-identified demand shock. Additionally, these shocks have the appealing feature
that they induce a negative co-movement between real interest rates and output, which
allows us to shed light on the underlying transmission channels.

The patenting responses to business cycle and monetary policy shocks are remarkably
similar: the green patent share increases after a contractionary shock, driven by a rise in
the number of green patents and a decline in non-green patenting. The procyclicality of
non-green innovation aligns with the common notion that tighter credit conditions, lower
revenues, and reduced profits during economic downturns result in cuts to R&D budgets
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and a decrease in patenting intensity. This raises the question of what can explain the
different cyclicality of green innovation.

A key difference between green and non-green patents lies in their duration. As the
economy transitions away from carbon-intensive technologies, green patents generate
profits that are heavily backloaded. This payoff structure makes the value of green patents
and thus green patenting less sensitive to business cycle shocks, which operate at much
shorter frequencies. There are two channels that could be driving this result. The first
works through cash flows: as profits are backloaded, they are less affected by transitory
shocks. The second works through discounting: economic contractions are typically asso-
ciated with a fall in discount rates. Thus, future profits are discounted by less, which helps
stabilize patent values. The fact that we find comparable results for general business cycle
and monetary policy shocks suggests that the cash flow channel dominates—since mone-
tary policy shocks imply a negative co-movement between output and discount rates, the
discount rate channel would predict more cyclical green innovation.

The contrasting cyclical patterns of green and non-green patenting are robust across
multiple dimensions. First, we show that these cyclical patterns extend beyond national
borders. While our primary focus is on the United States, we document similar divergent
cyclicality between green and non-green patenting in OECD countries and globally. Sec-
ond, we show that the cyclicality is comparable for patenting among listed and private
firms. Third, the result holds true not only in the aggregate but also at the firm level. By
linking patent data with balance sheet information for U.S. public firms, we find com-
parable firm-level patenting responses to monetary policy shocks, even when controlling
for firm characteristics such as leverage, size, or firm age. Importantly, we also document
a reallocation from non-green to green patenting within firms. Finally, we show that firms
with longer duration, as proxied by a low book-to-market value or a high green patent
share, display a more pronounced green patenting increase following a contractionary
shock. Beyond this, we find little heterogeneity based on observed firm characteristics.

To explain the different cyclicality of green and non-green innovation, we develop
a business cycle model with directed technical change. The model features endogenous
innovation in green and non-green technologies. We first study a simple production econ-
omy, taking the aggregate level of innovation and labor as given. The production block
consists of a final good producer that assembles the final good using materials and en-
ergy. The energy input is a composite of fossil fuels and green energy. Intermediate input
producers produce non-green materials and green energy varieties.

We show that in this economy, the equilibrium market share of the green energy com-
posite increases along the green transition, and green patents generate higher profits in
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the future. We label this phenomenon green is in the future. The intuition for this result
goes as follows. In our model, the number of green varieties reflects the productivity of
green inputs. As the green share increases along the transition, the productivity of green
inputs rises, leading to lower prices and higher demand for green inputs. Consequently,
the profits from producing green inputs are higher in the future. This implies that the
value of a green patent, which is proportional to the discounted sum of future profits, is
more heavily influenced by future profits relative to that of non-green patents.

The backloaded profit structure of green patents combined with the transitory na-
ture of business cycle shocks implies that their value responds less to such shocks than
the value of non-green patents. This in turn generates an incentive to change the green
patenting intensity by less when faced with macroeconomic shocks. We keep discount
rates fixed in this partial equilibrium setting, but provide a decomposition between the
cash flow and discount rate channel in general equilibrium.

We close the model by introducing innovators that engage in R&D to create new green
and non-green varieties, and a standard household block. The model features a positive
externality from the aggregate technological level, assuming that each successful innova-
tion creates new varieties of green energy and materials.

The green is in the future channel—as distilled in partial equilibrium—is able to gen-
erate the countercyclicality of the share of green varieties, also in general equilibrium.
Even though we allow for the discount rate channel which could work against the coun-
tercyclicality, we find that the cash flow channel generally dominates.

While the green is in the future channel can account for the relative cyclicality, it can-
not generate the countercyclicality of the number of green patents. In general equilibrium,
however, there is an additional effect driven by the inelastic supply of skilled labor. When
the labor supply curve is positively sloped, a recessionary shock reduces non-green inno-
vation, which in turn lowers aggregate demand for skilled labor and thus wages. The
lower wage then decreases the cost of green R&D, incentivizing firms to undertake more
green innovation and offsetting the partial-equilibrium effect. When this effect is suffi-
ciently strong, the model is able to generate the differential cyclicality of the number of
green and non-green patents observed in the data.

Finally, we provide direct evidence on the key mechanisms of the model. At the core
of the green is in the future channel lies the weaker cyclicality of green patent values. We
confront this model prediction with the data, leveraging the Kogan et al. (2017) dataset
on market-implied values of patents filed in the United States. In line with our model,
green patent values move less with the business cycle and macroeconomic shocks such as
monetary policy shocks. This holds true at the patent level and for green and non-green
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value indices at the firm level.
To shed light on the general equilibrium effects via skilled labor, we construct a firm-

level dataset on inventors based on information extracted from the patent data. We find
that both the share and the number of green inventors in firms increases significantly
following a contractionary shock—consistent with the higher demand for green skilled
workers that our model predicts in general equilibrium.

Related literature. This paper contributes to several strands of literature. First, it re-
lates to the extensive body of research on the cyclicality of innovation. A large literature
documents that aggregate innovation, as measured by R&D expenditures and patent fil-
ings, is procyclical (e.g. Aghion et al., 2010; Aghion et al., 2012; Barlevy, 2007). Related
research shows that business cycle shocks can have long-lasting effects on economic ac-
tivity through their impact on investment, innovation and productivity (Antolin-Diaz
and Surico, 2022; Jordà, Singh, and Taylor, 2024; Ilzetzki, 2024; Furlanetto et al., 2025).
In recent work, Ma and Zimmermann (2023) focus on monetary policy and show that
contractionary monetary shocks decrease aggregate innovation. The procyclicality of in-
novation is typically explained by the fact that economic contractions reduce firms’ cash
flows and tighten financial constraints, leading to lower R&D investment and innova-
tion output. Our findings confirm this broad pattern for overall patenting but reveal an
important distinction between green and non-green innovation.

Second, our paper relates to the literature on green innovation and its determinants.
Given recent estimates of the social cost of carbon (Burke et al., 2023; Bilal and Känzig,
2024), understanding the drivers of green innovation is of utmost importance. Prior stud-
ies have examined how environmental policies, such as carbon pricing and subsidies, in-
fluence green technological development (Calel and Dechezleprêtre, 2016; Colmer et al.,
2024; Aghion et al., 2016; Känzig, 2023). Popp (2002) provides early evidence that higher
energy prices induce clean innovation by directing inventive activity. Acemoglu et al.
(2012) emphasize the central role played by market size and price effects on the direction
of technical change. Acemoglu et al. (2023) examine the shale gas revolution, showing
that the natural gas boom discourages green innovation.

In an important and closely related paper, Aghion et al. (2024) study the role of finan-
cial barriers to green innovation. They show that young, financially constrained firms
substantially curb their green innovation when faced with credit shocks. Our analysis
complements theirs by studying different aspects of the relationship between macroe-
conomic conditions and green innovation. First, while their focus is on how the global
financial crisis contributed to the recent slowdown in the green transition, we examine
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cyclical fluctuations in green and non-green innovation more broadly. Second, we study
more mature firms in the United States, which are less likely to be financially constrained,
whereas their analysis centers on younger, smaller firms in Germany and across Europe.

Our paper contributes to this literature by documenting the cyclicality of green patent-
ing and providing a theoretical explanation for its countercyclicality. Unlike Fornaro,
Guerrieri, and Reichlin (2025), we document reallocative effects between green and non-
green innovation across and within firms. The countercyclicality of green innovation is
consistent with the Schumpeterian view (Aghion and Saint-Paul, 1998): economic down-
turns and the associated fall in wages reduce the opportunity cost of innovative activity
and induce more green innovation, at the expense of non-green innovation.

Our general equilibrium model with both green and non-green innovation also con-
tributes to the literature on medium-run fluctuations, which emphasizes the interplay be-
tween technological progress, capital accumulation, and business cycle dynamics (Comin
and Gertler, 2006; Anzoategui et al., 2019; Wang and Zhang, 2025, among others). A num-
ber of influential studies focus on understanding the historically slow recoveries from re-
cessions (Benigno and Fornaro, 2018; Bianchi, Kung, and Morales, 2019; Queralto, 2020).
Other research examines the implications for asset prices and exchange rates (Kung and
Schmid, 2015; Gornemann, Guerrón-Quintana, and Saffie, 2021). While existing models
typically focus on aggregate technical change, our framework incorporates the dynamics
of directed green and non-green innovation during the green transition.

Outline. The paper proceeds as follows. Section 2 presents stylized facts on the cycli-
cality of green and non-green innovation: in the aggregate and at the firm-level, uncon-
ditional and conditional on macroeconomic shocks. Section 3 introduces our business
cycle model with green and non-green innovation. In Section 4, we confront key model
predictions with the data. Section 5 concludes.

2. Green Innovation Over the Business Cycle

How does innovation activity vary with the business cycle? Does green innovation dis-
play a different sensitivity to economic downturns and upswings than other types of
innovation? Answering these questions presents two key challenges. First, how to accu-
rately measure different types of innovation. Second, how to best represent the business
cycle. For the former, we will rely on patent data—a widely used proxy for innovation
(see e.g. Nagaoka, Motohashi, and Goto, 2010). For the latter, we start by document-
ing the unconditional dynamic co-movements of patenting with the business cycle before
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studying the relationship conditional on structural economic shocks.

2.1. Measuring Green Innovation

Measuring innovation presents a fundamental challenge in understanding how techno-
logical change responds to economic fluctuations. Patent data offer a well-established
proxy for innovation, providing a consistent and detailed record of inventive activity
across industries and time. Importantly, patents capture both the scale and nature of
innovation: a detailed classification system enables researchers to distinguish between
green and non-green technological advances.

The ability to classify patents is a key advantage over R&D expenditure data, another
widely used measure of innovation. Unlike patents, R&D expenditure data are typically
reported at the aggregate level and lack detailed breakdowns by type of research activity.
This poses a challenge because firms engage in many types of research simultaneously.
These activities do not necessarily correlate with observable characteristics, making it
difficult to disentangle targeted investments in specific technologies from broader inno-
vation efforts. For instance, many firms in carbon-intensive industries display substantial
engagement in green R&D. Patents, by contrast, provide a direct and observable measure
of directed innovation, which is why we focus on patent data in our analysis.

We rely on the Worldwide Patent Statistical Database (PATSTAT), which encompasses
bibliographic information for close to the universe of patents globally. The data allow
us to identify patent families—patents representing the same innovation filed at different
patent offices. To avoid double counting, we treat all patents in a patent family as a single
innovation (Hémous et al., 2025). For each patent family, we use the original application
date to capture the time of innovation and assign nationality based on the respective filing
office. See Appendix Table A.2 for an example of a patent family.

Our key goal is to measure green innovation. To that end, we use the International
Patent Classification (IPC) and Cooperative Patent Classification (CPC) codes associated
with patent filings. The OECD has developed specific categories for climate change mit-
igation technologies (Y02) and smart grids (Y04S), allowing us to systematically identify
and track relevant technological advancements (see Migotto and Haščič, 2015). Our def-
inition of green patents follows Acemoglu et al. (2023) and is a subset of the patents in
Y02, excluding innovations that do not directly compete with fossil-fuel technologies.1

Including all Y02E subclasses or adding smart grid technologies (Y04S) as in Calel and

1Specifically, we exclude patents aimed at reducing pollution from fossil-fuel electricity generation
(Y02E20), improving grid efficiency (Y02E40) or storage (Y02E60).
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Figure 1: Green innovation in the U.S. and OECD countries, 1986–2019
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(b) OECD countries
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Notes: Trends and cycles in green and non-green patenting. Left: United States. Right: OECD
countries. The top panels show the share of green patents, based on our selection of Y02 sub-
classes. For the U.S., we report the overall green patent share as well as separate shares for listed
and unlisted firms. The bottom panels display the cyclical components of green and non-green
patent counts, extracted using the Hodrick-Prescott filter with λ = 1, 600. Appendix Figure B.3
shows the cyclical components of U.S. patents by listed and unlisted firms.

Dechezleprêtre (2016) produces very similar results, see Appendix B.10.
Since a patent family is typically associated with many classification codes, we con-

sider it green when any of the codes meet our criteria. We treat the remaining patents as
non-green (or gray). Table A.3 in the Appendix includes some examples of green patents.

Aggregate trends and fluctuations. Based on our patent database, we compute aggre-
gate patent application counts. While our primary focus is on patenting in the United
States, we also report comparable statistics for OECD countries.2

The top panels of Figure 1 show how the share of green patents relative to total patents
filed in the U.S. and the OECD evolves from the mid-1980s until the end of 2019. We
observe a stark increase in the green patent share over this period, largely driven by a big

2Among OECD countries, patents filed with the USPTO account for 21% of total patents and 22% of
green patents.
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surge between 2005 and 2010. Green patenting starts at a relatively low level—around 3%
in the U.S. and 2% in the OECD—reaches a peak at around 8% in 2011, and has stabilized
or even decreased slightly since. The trends are broadly similar in the U.S. and the OECD,
and align with findings in the existing literature (see e.g. Aghion et al., 2024).

The trends in inventive activity mask the pervasive cyclical fluctuations in patenting.
To shed light on these dynamics, the bottom panels of Figure 1 show the cyclical com-
ponents of green and non-green patent filings in the United States and OECD countries,
extracted using the Hodrick-Prescott filter. Both types of patents vary meaningfully over
the business cycle. Strikingly, however, green and non-green patents do not co-move
very strongly: while non-green patents tend to be procyclical—declining during the early
1990s recession and the 2008 global financial crisis—green patents filings appear counter-
cyclical, displaying an increase during those same downturns.

Firm-level statistics. Which firms account for the bulk of green and non-green patent-
ing? To better understand the key innovators, we merge the PATSTAT dataset with cor-
porate balance sheet data. For firm-level financials, we use Compustat North America,
covering the universe of publicly listed companies in the United States. To link the patent
data, we rely on two leading datasets that connect patents to firms. The first is Orbis
Intellectual Property, which provides global patent portfolios linked to Orbis companies
(see Hémous et al., 2025); we match these to Compustat using ISIN identifiers. The sec-
ond is the dataset by Arora, Belenzon, and Sheer (2021), which extends the NBER patent
database (Hall, Jaffe, and Trajtenberg, 2001) and directly links USPTO patents to Compu-
stat firms.

We use the unique patent application number common to both datasets to merge
them with information from PATSTAT. In total, we successfully match 1.7 million distinct
patent families—including approximately 93,000 green patents—to over 2,100 Compus-
tat firms. Reassuringly, the overlap in matched patents across the two sources is high (see
Appendix A for details).

Who are the main players in green innovation? We find that a substantial share of
green patents—on average, 42% of quarterly green patent filings—are filed by listed firms.
Among these, Table 1 presents descriptive statistics on green patenting by firm size. The
bulk of green patenting in the U.S. is concentrated in the largest companies (top size
quartile), accounting for more than four out of five green patents filed between 1986 to
2019. While smaller and younger firms patent relatively more in green technology classes,
the bottom half of the size distribution accounts for less than 7% of the green patents in
our sample. By contrast, the 20 largest green innovators account for close to 50% of green
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Table 1: Green patenting and firm size

Firm size quartiles

First Second Third Fourth

Number of green patents 2,241 4,560 9,248 82,816

Green patent share (%) 22.04 11.66 8.96 10.46

Size 40 244 1,214 16,750

Age 14.89 17.56 22.78 30.98

Book to market ratio 0.26 0.45 0.42 0.38

GHG emission intensity 38.17 34.62 81.93 316.07

Notes: The table reports the total number of green patents and the average share of green patents
across four quartiles of the firm size distribution. Firm size is measured by average total assets (in
millions of 2017 USD) as reported in Compustat from 1986 to 2019. Average firm age is based on
incorporation dates from Worldscope. Average GHG emissions intensity is calculated as Scope 1
emissions relative to revenue, using data from Trucost.

patent filings (see Table B.1 in the Appendix).
Thus, large firms appear to be important drivers behind green innovation in the United

States.3 Interestingly, these firms are not particularly green according to conventional
metrics. As shown in Table 1, larger firms exhibit a substantially higher GHG emissions
intensity than smaller ones. Their patent portfolios are also less weighted toward green
technology classes (see also Fornaro, Guerrieri, and Reichlin, 2024). This pattern is con-
sistent with recent evidence in Cohen, Gurun, and Nguyen (2020) showing that utilities
and energy companies are important drivers of green innovation.

As expected, firm size is positively correlated with firm age. When examining the
book-to-market ratio, growth firms are primarily concentrated in both the smallest and
largest size quartiles, while value firms are more evenly distributed across the middle of
the size distribution.

Due to data limitations, our focus is on listed firms. However, an important question
is how patenting activity in listed firms compares to that in unlisted firms. To explore
this, we construct a green patent share based on the sample of patents that cannot be

3Importantly, this relationship may differ across countries. For instance, Aghion et al. (2024) document
that smaller firms account for a large share of green patenting in German data. However, firms in our sam-
ple tend to be substantially larger—a firm at the 90th percentile of their fixed asset distribution (97 million
EUR) would fall into the bottom quartile of our total asset distribution—complicating a direct comparison.
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linked to listed firms, which we attribute to unlisted firms.4 As shown in the top-left
panel of Figure 1, trends in green patenting among unlisted firms are broadly similar to
those observed for listed firms.

2.2. The Cyclicality of Green Innovation at the Macro Level

How does green and non-green innovation fluctuate over the business cycle? Theoreti-
cally, the cyclicality of innovation is ambiguous. According to the Schumpeterian view,
economic downturns and the associated fall in wages reduce the opportunity cost of in-
novative activity and induce higher long-term productivity growth (Aghion and Saint-
Paul, 1998). However, the effect can be overturned in the presence of financial constraints
(Aghion et al., 2010). Thus, the direction and amplitude of the cyclicality of innovation is
an empirical question.

To shed light on this, we perform two complementary exercises. First, we study how
patenting changes after “business cycle shocks” by analyzing the dynamic correlation be-
tween patenting measures and unexpected changes in GDP or other business cycle indi-
cators. Second, we estimate the dynamic causal effects of monetary policy shocks—used
here as a stand-in for well-identified demand shocks—on patenting. These shocks also
have the desirable property of moving output and interest rates in opposite directions,
which will be informative of the underlying mechanisms at play.

Unconditional cyclicality. To assess how patenting varies with the cycle, we estimate
simple local projections à la Jordà (2005) on business cycle “shocks” in the spirit of An-
geletos, Collard, and Dellas (2020). Specifically, we estimate

yt+h = αh + ψhbct + βh
xxt−1 + εt+h, (1)

where yt+h is the innovation measure of interest, h-quarters ahead, bct is a business cycle
indicator, xt−1 is a vector of controls and εt+h is a potentially serially correlated error
term. As the relevant innovation measures, we consider the number of overall patents
filed, the number of green and non-green patents (all expressed in logs), and the green
patent share.5 In our baseline, we use real GDP growth as the business cycle indicator.
However, our results are robust to using alternative indicators (see Appendix B.2).

4According to Kahle and Stulz (2017), Compustat covers 97–99% of the market capitalization of all listed
U.S. firms between 1975 and 2015. Because we assign patent nationality based on the original patent office,
we expect filings by foreign corporations to be modest.

5We apply a one-quarter backward-looking moving average to the patent counts to address volatility in
patent filings. However, the results are robust to using raw counts, see Appendix B.6.
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Figure 2: Green and non-green patenting responses to business cycle shock

-10

-5

0

5
Pe

rc
en

t

0 4 8 12 16 20

Quarters

Number of patents

-10

-5

0

5

Pe
rc

en
t

0 4 8 12 16 20

Quarters

Number of non-green patents

-.2

0

.2

.4

.6

Pe
rc

en
ta

ge
 p

oi
nt

s

0 4 8 12 16 20

Quarters

Green patent share

-5

0

5

10

Pe
rc

en
t

0 4 8 12 16 20

Quarters

Number of green patents

Notes: Impulse responses of green and non-green patenting in the United States to a recessionary
innovation to GDP growth, estimated based on the reduced-form local projections (1). The shock
is normalized to decrease GDP growth by 1% on impact. Solid line: point estimate. Dark and light
shaded areas: 68 and 95% confidence bands based on lag-augmented standard errors.

Our controls include 4 lags of the business cycle indicator and the patenting measure.
Moreover, we include quarterly dummy variables and a linear time trend to account for
seasonality and trending behavior.6 By controlling for lags of GDP growth and the patent-
ing measure, we isolate an innovation in GDP that is not forecastable by past economic
and innovative activity.7 The coefficients ψh are the dynamic effects of interest: they cap-
ture how an unexpected change in GDP affects patenting both contemporaneously and
over future periods. It is important to note that these are dynamic correlations and do not
have a causal interpretation. Standard errors are computed using the lag-augmentation
approach (Montiel Olea and Plagborg-Møller, 2021).

6The U.S. patent data exhibits spikes in patent filings in 1995Q2 and 2013Q1, driven by changes in U.S.
patent law associated with the Uruguay Round Agreements Act and the America Invents Act, which we
account for using two additional dummy variables. The results are robust to omitting these controls.

7In this way, we recover a “shock” that maximizes variations in GDP on impact—a special case of the
approach in Angeletos, Collard, and Dellas (2020) who target variations over a finite short-run horizon.
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We estimate equation (1) based on U.S. data. Our estimation sample spans the pe-
riod from 1986Q1, when consistent reporting in the Compustat data begins, and ends in
2019Q4, before the onset of the Covid pandemic. Due to substantial reporting lags in the
PATSTAT data, extending the sample to more recent periods is challenging.

Figure 2 presents the results. Focusing on total innovation activity, we find that patent-
ing is procyclical—that is, the number of patents filed tends to rise during economic ex-
pansions and decline during downturns. This pattern is consistent with the view that
tighter credit conditions, lower revenues, and reduced profits in recessions lead firms to
cut R&D spending, resulting in fewer patent filings (Aghion et al., 2010; Aghion et al.,
2012).

Comparing the cyclicality of green and non-green patents reveals a striking result: the
green patent share increases significantly following an economic downturn. This increase
is not only statistically but also economically significant. A fall in GDP by 1% leads to an
increase in the green patent share by close to 0.3 percentage points. What is driving the
relative increase in green patenting? A comparison of the responses in the bottom panels
reveals that non-green patent applications decline more strongly than the total, whereas
green patenting even tends to rise. This suggests that green patenting is not only less
cyclical than non-green patenting, but may even be countercyclical—though the increase
is not very precisely estimated.

Cyclicality conditional on monetary policy shocks. While the unconditional time-series
evidence is informative, it may confound the impacts of the different underlying shocks
driving the business cycle. Therefore, it is important to establish the cyclicality of green
patenting conditional on structural economic shocks.

Over our sample period of interest, business cycles are thought to be mainly demand
driven. Credibly identifying demand shocks is challenging though. We focus on mone-
tary policy shocks, as a well-identified instance of a demand shock. Another appealing
feature of these shocks is that they imply an opposing effect on interest rates and output,
which will help to shed light on the underlying transmission channels. In Appendix B.7,
we study the robustness of the results when conditioning on other shocks such as oil price
shocks.

To identify monetary policy shocks, we rely on high-frequency identification tech-
niques (Gertler and Karadi, 2015; Nakamura and Steinsson, 2018). We employ the mon-
etary surprises constructed by Bauer and Swanson (2023), purged from macroeconomic

13



and financial data.8 Using these surprises as an instrument, we estimate the dynamic
causal effects of a monetary policy shock on green patenting. Specifically, we run a series
of instrumental variable-local projections:

yt+h = αh + θhrt + βh
xxt−1 + εt+h, (2)

where yt+h again corresponds to the innovation measure of interest h-quarters ahead, rt

is the policy rate, which we instrument using monetary surprises, and xt−1 is a vector of
controls to account for macroeconomic and financial conditions. We use the federal funds
rate as the relevant monetary policy indicator, but account for the zero lower bound using
a dummy variable. Using the one-year rate instead produces very similar results. The
controls include 4 lags of the policy rate, log real GDP, the unemployment rate, log GDP
deflator, and the excess bond premium from Gilchrist and Zakrajšek (2012). We keep
including quarterly dummy variables and a linear time trend to account for seasonality
and trending behavior. The key object of interest is θh, the dynamic causal effect of a
monetary policy shock on the innovation measure.

Reassuringly, the effective F-statistic in the first stage is above 10, suggesting that there
is no weak instrument problem at hand. We thus proceed by conducting standard infer-
ence. Before looking at the patenting responses, we also confirm that the responses of U.S.
macroeconomic variables to our identified monetary policy shocks are consistent with
existing empirical evidence, see Appendix B.3. Throughout, we normalize the monetary
policy shock to increase the Fed funds rate by 25 basis points.

Figure 3 shows the results. In line with the unconditional evidence, we find that over-
all patenting is procyclical: a contractionary monetary policy shock leads to a significant
fall in aggregate patenting. This finding is consistent with the evidence in Ma and Zim-
mermann (2023).

Next, we turn to the responses of green and non-green patenting. We confirm that
green patenting is countercyclical, even conditional on monetary policy shocks. A con-
tractionary monetary policy shock leads to a significant and persistent increase in the
green patent share, with a peak effect of 0.3 percentage points after 15 quarters. The num-
ber of non-green patents declines substantially—slightly more than the decline in overall
patenting—while the number of green patents rises. This increase is more pronounced
and statistically significant compared to the unconditional evidence.

Why is green patenting less cyclical than non-green—and even tends to be counter-

8Our results are robust to using the monetary surprises from Jarociński and Karadi (2020), see Appendix
B.7.
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Figure 3: Green and non-green patenting responses to a monetary policy shock
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Notes: Impulse responses of green and non-green patenting in the United States to a monetary
policy shock, estimated based on the local projections model (2) using high-frequency monetary
surprises as an instrument. The shock is normalized to increase the federal funds rate by 25 basis
points on impact. Solid line: point estimate. Dark and light shaded areas: 68 and 95% confidence
bands based on lag-augmented standard errors.

cyclical? A key difference lies in the timing of expected profits. Green patents tend to
generate returns further in the future, whereas non-green patents have a more front-
loaded profit structure. Indeed, as we show in Appendix B.8, green patents are signif-
icantly more likely to be renewed, consistent with the notion of more backloaded returns.
Since business cycle shocks primarily affect short-term economic conditions, this makes
the value of green patents—and thus the intensity of green patenting—less sensitive to
cyclical fluctuations.

There are two distinct channels that can rationalize this insight: a cash flow channel
and a discount rate channel. The first channel captures that, at fixed discount rates, the
cash flows of green patents are less affected by short-term business cycle fluctuations
because of their backloaded profile. The second channel captures the notion that discount
rates tend to fall in recessions, and thus the more distant cash flows of green patents are
discounted by less, making green patent values less cyclical.
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Our evidence conditional on monetary policy shocks helps shed light on the relative
importance of these channels. Monetary policy shocks imply a negative co-movement be-
tween discount rates and output: discount rates increase after a contractionary monetary
policy shock. Thus, in this case the discount rate channel would predict more cyclical and
not less cyclical green innovation. Our finding that both business cycle and monetary pol-
icy shocks generate similar cyclical patterns in green and non-green patenting suggests
that the cash flow channel dominates the discount rate channel.

Sensitivity. We perform a number of sensitivity and robustness checks. First, we show
that the estimated effects extend beyond the sample of U.S. patents. Figure 4 presents the
response of the green patent share in OECD countries and globally to a contractionary
U.S. monetary policy shock. Interestingly, we find a similar increase in green patenting as
in the U.S. sample. This pattern is consistent with the well-documented global spillovers
of U.S. monetary policy (Miranda-Agrippino and Rey, 2020). In Appendix B.5, we further
show that the rise in the green patent share in other geographies is similarly driven by an
increase in the number of green patents and a decline in the number of non-green patents.

Second, we analyze whether the cyclicality of green patenting differs between listed
and unlisted U.S. firms. To this end, we construct the green patent share separately for
two samples: patents linked to listed firms and the remaining patents, which we attribute
to unlisted firms. The lower panels in Figure 4 present the results. We find a relative in-
crease in green patenting in both groups, although the response for unlisted firms is esti-
mated less precisely. Interestingly, the green patent share rises more quickly among listed
firms, while the increase among unlisted firms takes longer to materialize—consistent
with the idea that listed firms, with larger R&D departments, can respond more rapidly
to economic conditions.

Finally, we consider alternative channels that could help explain the countercyclical-
ity of green innovation. One possibility is that green patenting responds to commodity
prices—particularly oil prices. If a recession is triggered by an oil price shock, higher
oil prices may incentivize directed technical change (Popp, 2002; Hassler, Krusell, and
Olovsson, 2021). However, as we are focusing on demand shocks—business cycle and
monetary policy shocks—this channel is unlikely to be driving our results. Indeed, we
find similar patterns when examining patenting responses to oil supply shocks, which
lead to significant increases in oil prices, suggesting that mechanisms other than energy
prices are at play (see Appendix B.7).

Another potential channel relates to physical climate risks. If economic contractions
are triggered by natural disasters, this could increase demand for technologies in climate
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Figure 4: Sensitivity with respect to geography and type of firm
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Notes: Impulse responses of the green patent share to a U.S. monetary policy shock for differ-
ent geographies and firm types, estimated based on the local projections model (2) using high-
frequency monetary surprises as an instrument. Upper panels: responses based on patents filed
in OECD countries and patents filed worldwide, respectively. Lower panels: responses for patent-
ing by listed and unlisted firms. The shock is normalized to increase the federal funds rate by 25
basis points on impact. Solid line: the point estimate. Dark and light shaded areas: 68 and 95%
confidence bands based on lag-augmented standard errors.

mitigation. To account for that possibility, we control for the climate news index by Engle
et al. (2020)—a text-based measure of climate change–related news coverage. Figure 5
shows that our results remain robust.

Another possible explanation is that countercyclical fiscal policy and automatic stabi-
lizers disproportionately benefit the green sector. For example, the American Recovery
and Reinvestment Act of 2009 included substantial green components—such as invest-
ments in renewable energy, energy efficiency, and clean technology—aimed at both stim-
ulating the economy and advancing the low-carbon transition (Chen et al., 2021). Such
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Figure 5: Controlling for investor demand and green government spending
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Notes: Sensitivity of green patenting responses to a monetary policy shock, estimated based on the
local projections model (2) using high-frequency monetary surprises as an instrument. The orange
dotted line is from a specification controls for the climate news index by Engle et al. (2020), and the
yellow dashed line controls for government spending interacted with a Democrat dummy. The
shock is normalized to increase the federal funds rate by 25 basis points on impact. Lines: point
estimates. Dark and light shaded areas: 68 and 95% confidence bands for baseline estimates based
on lag-augmented standard errors.

measures can help sustain green innovation during downturns, potentially contributing
to its observed countercyclicality. To assess the relevance of this channel, we control for
government spending, interacted with a dummy indicating whether the federal govern-
ment was Democrat-led, reflecting that pro-green fiscal measures have predominantly
been enacted under Democratic administrations during our sample period. As shown in
Figure 5, this does not change our results materially.

Finally, we perform a number of robustness checks with regards to the measurement
of green innovation. Specifically, the results are robust to using alternative green patent
classifications, relying exclusively on USPTO data, and controlling for patent quality (see
Appendices B.10, B.13, and B.12, respectively).

2.3. The Cyclicality of Green Innovation at the Firm Level

The evidence based on aggregate patent data suggests that green patenting is counter-
cyclical. Is this pattern driven by a subset of firms that specialize in green technologies
and respond differently to the cycle, or is there some reallocation from non-green to green
patenting even within firms?

To examine this, we study firm-level patenting responses in a large panel of listed U.S.
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companies. Formally, we estimate a panel version of the local projections in equation (2):

yi,t+h = αh
i + θhrt + βh

xixi,t−1 + βh
xxt−1 + εi,t+h, (3)

where yi,t+h now corresponds to the outcome variable of firm i, h-quarters ahead. As
outcome variables, we consider firms’ overall number of patents filed, the green patent
share, and the number of green or non-green patents. In this specification, we also control
for firm fixed effects, αh

i , to absorb any time-invariant firm characteristics. To allow for
general forms of cross-sectional and temporal dependence in the panel data, we compute
standard errors using the Driscoll and Kraay (1998) approach.

We restrict our sample to companies that are consistently observed for 20 quarters
and exclude firms in the finance, insurance, real estate or public administration sectors.
We also drop firms without any green patent over our sample period.9 Our final sample
consists of 166,000 firm-quarter observations, covering more than 2,100 companies and
about 93,000 green patents between 1986Q1 and 2019Q4.

A challenge in the firm-level estimations is the sparseness of the patent data. The
presence of many zeros, especially in green patent counts, implies missing values when
expressing patent counts in logs. We approach this problem in two ways. First, we ap-
ply a backward-looking 3-quarter moving average to our firm-level patenting measures.
Second, we do not estimate the responses of patent counts in logs. Instead, we use raw
patent counts and normalize the impulse responses using the average patent count to
obtain percent changes.

Figure 6 shows the firm-level patenting responses to a contractionary monetary policy
shock. The estimated responses align well with the aggregate evidence, both qualitatively
and quantitatively. In line with the aggregate estimates, we find a significant fall in overall
and non-green patents and an increase in the number of green patents. We also document
an increase in the firm-level green patent share, which peaks at around 0.4 percentage
points and persists for close to 20 quarters. This is striking, because it suggests a shift
from non-green to green patenting even within a given firm.

An alternative approach to deal with the sparesness in the patent data is to employ a
Pseudo-Poisson Maximum Likelihood (PPML) estimator (see e.g. Aghion et al., 2024):

E(
20

∑
h=1

yi,t+h) = exp(αi + θrt + βh
xixi,t−1 + βh

xxt−1 + εi,t+h), (4)

9This assumption follows Hémous et al. (2025), but is not critical for our results.
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Figure 6: Green and non-green patenting responses of U.S. firms
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Notes: Impulse responses of firm-level patenting measures in the United States to a monetary
policy shock, estimated based on the panel local projections model (3) using high-frequency mon-
etary surprises as an instrument. The shock is normalized to increase the federal funds rate by
25 basis points on impact. Solid line: point estimate. Dark and light shaded areas: 68 and 95%
confidence bands based on Driscoll and Kraay (1998) standard errors.

where ∑20
h=1 yi,t+h captures firm i’s cumulative number of green and non-green patents,

20 quarters ahead. By focusing on cumulative patents, we allow for a sufficiently long lag
between R&D expenditures and patent applications, in line with Hémous et al. (2025). As
before, we instrument the Fed funds rate using monetary surprises and include a set of
(lagged) controls and firm fixed effects.

Firm-level heterogeneity. How does the patenting response vary with firm-level char-
acteristics? Do firms with a more backloaded profit structure display a stronger green
patenting response? Based on the more parsimonious PPML specification, we study how
monetary policy shocks interact with lagged firm-level characteristics of interest, di,t−1:

E(
20

∑
h=1

yi,t+h) = exp(αi + δt + γrtdi,t−1 + βh
xixi,t−1 + εi,t+h). (5)
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Table 2: Heterogeneity by firms’ profit structures

Dep. var.: Green patentsit+h Non-green patentsit+h

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

rt 1.82∗∗∗ 1.75∗∗∗ 1.57∗∗∗ -3.43∗∗∗ -3.41∗∗∗ -4.70∗∗∗

(0.36) (0.35) (0.36) (0.52) (0.52) (0.55)

rt × btmit−1 -0.21∗∗ -0.19∗∗∗ 0.26∗∗ 0.41∗∗∗

(0.10) (0.05) (0.12) (0.07)

rt × gpsi 1.34∗∗∗ 1.28∗∗∗ -0.43 -0.35
(0.38) (0.31) (0.79) (0.16)

Observations 83,041 82,304 82,304 72,045 72,045 82,966 82,231 82,231 72,841 72,841
Firms 1,552 1,549 1,549 1,397 1,397 1,552 1,549 1,549 1,397 1,397
Time FE No No Yes No Yes No No Yes No Yes

Notes: The table shows the patenting semi-elasticities, based on the PPML model (4). The depen-
dent variables are a firm’s cumulative, 20-quarter ahead number of green and non-green patents,
respectively. rt is the policy rate, instrumented using monetary surprises. We consider a 25 basis
point increase. We include interaction terms with the lagged, standardized book-to-market ratio
and a firm’s initial green patent share. Bootstrapped standard errors clustered at the time-level in
parentheses. Significance levels denoted by ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

We use two measures to proxy for firms’ profit structures. The first is the book-to-market
value with the idea being that growth firms—i.e. firms with low book-to-market—have a
more backloaded profit structure. Second, we consider firms’ green patent shares. To the
extent that green patents have more backloaded returns, a firm with a high share of green
patents will also have a more backloaded cash flows. Given the sparseness of the green
patent data, we rely on the firm-level average computed over the first 20 quarters of each
firm’s observation period, gpsi, to assess this margin.

The interaction term allows us to control for time fixed effects, δt, which helps to
sharpen the identification of the (relative) effects of monetary policy shocks. To conduct
inference, we rely on bootstrapped standard errors clustered at the time level.

Table 2 presents the results. The baseline estimates for green and non-green patent-
ing are shown in columns (1) and (6). Consistent with the local projections, we find a
significant increase in the number of green patents and a decrease in the number of non-
green patents. Quantitatively, a 25 basis point monetary policy shock is associated with
a 1.8% rise in the cumulative number of green and a 3.4% decline in the number of non-
green patents over the horizon of 20 quarters. Thus, the magnitude of the contraction in
non-green patenting is comparable to the local projections estimates.

In columns (2)-(5) and (7)-(10), we report the interaction effects with the book-to-
market value and the green patent share, respectively. To facilitate interpretation, we
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standardize the interaction terms. Consistent with our purported mechanism, we find
that growth firms and firms with a high green patent share display a significantly more
positive green patenting response. These effects are also economically meaningful: firms
with a green patent share one standard deviation above the mean show around a 1.7
times larger increase in the number of green patents. The interaction effects are robust
to including time fixed effects. Similarly, the base effects are largely unchanged when
introducing the interactions.

Table 3: Heterogeneity by firms’ financial constraints

Dep. var.: Green patentsit+h Non-green patentsit+h

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

rt 1.57∗∗∗ 0.81∗ 2.09∗∗∗ 1.83∗∗∗ 1.76∗∗∗ -4.09∗∗∗ -4.60∗∗∗ -5.11∗∗∗ -3.51∗∗∗ -3.45∗∗∗

(0.38) (0.46) (0.59) (0.36) (0.37) (0.52) (0.55) (0.64) (0.53) (0.53)

rt × leverageit−1 0.31 -0.47
(1.30) (3.90)

rt × ageit−1 -0.25 -0.11
(0.29) (0.09)

rt × sizeit−1 0.06 0.10
(0.26) (0.21)

rt × st debtit−1 0.06 0.05
(0.04) (0.05)

rt × tobinsqit−1 0.06 0.02
(0.05) (0.04)

Observations 78,899 74,555 82,643 80,298 81,402 78,915 74,372 82,590 80,354 81,400
Firms 1,552 1,291 1,552 1,510 1,544 1,552 1,291 1,552 1,510 1,544

Notes: The table shows patenting semi-elasticities for additional interaction terms with proxies for
firms’ financial constraints, estimated based on the PPML model (4). The dependent variables are
a firm’s cumulative, 20-quarter ahead number of green and non-green patents, respectively. rt is
the policy rate, instrumented using monetary surprises. We consider a 25 basis point increase. We
include interaction terms with lagged, standardized variables proxying for financial constraints:
the leverage ratio, age, size (log assets), share of short-term debt and Tobin’s Q. Bootstrapped
standard errors clustered at the time-level in parentheses. Significance levels denoted by ∗∗∗ p <
0.01, ∗∗ p < 0.05, ∗ p < 0.10.

Do the patenting responses also vary with other firm-level characteristics? In particu-
lar, are the effects driven by firms that are more financially constrained? To explore this,
Table 3 presents interaction effects with a range of firm-level proxies for financial con-
straints, including leverage, firm age, size, short-term debt and Tobin’s Q. We find little
evidence that the effects of monetary policy shocks on firms’ innovative activity depend
on firms’ financial constraints. This contrasts with the evidence in Aghion et al. (2024),
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which points to an important role for financial constraints in a large sample of German
firms. Note, however, that we focus exclusively on listed firms, which tend to be larger
and more mature, and therefore less likely to be financially constrained. In contrast, finan-
cial constraints are likely to play a more important role for smaller, younger, and unlisted
firms, as Aghion et al. (2024) show.

We have presented both aggregate and firm-level evidence showing that green in-
novation is less cyclical—consistent with the idea that green profits are realized further
in the future and are therefore more insulated from short-term fluctuations. Moreover,
the fact that generic business cycle and monetary policy shocks lead to similar responses
in patenting suggests that the countercyclicality operates mainly through the cash flow
rather than the discount rate channel. In the next section, we develop a business cy-
cle model with endogenous green and non-green innovation that can account for these
stylized facts by formalizing the backloaded profit structure of green pattens along the
climate transition.

3. A Green Business Cycle Model

What is driving the countercyclical nature of green innovation? We have seen evidence
that suggests an important role for the backloaded profit structure of green innovations.
How far can we get with a model featuring this simple channel to account for the empir-
ical responses, both qualitatively and quantitatively?

To answer these questions, we develop a dynamic stochastic general equilibrium (GE)
model with endogenous green and non-green innovation. The model consists of three
building blocks: a production block, an innovation block, and a household block with
endogenous labor supply and consumption decisions.

We begin by describing the problem of the firm in Section 3.1, taking overall innova-
tion and labor outcomes as given. This partial equilibrium setting allows us to isolate
some of the key mechanisms. In Section 3.4, we embed the production block into a full
general equilibrium model and discuss the potential role of general equilibrium effects.

3.1. Firms

The production economy features a final good that uses both material and energy com-
posites as inputs. The energy input itself is a composite of fossil fuels and green energy.
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Final good producer. There is a representative firm that produces final good by employ-
ing unskilled labor Lt, a material composite Mt, and an energy composite Et:

Yt = (ZtLt)
αL MαM

t E1−αL−αM
t , (6)

where Zt is an aggregate labor productivity, evolving as

log Zt = ρz log Zt−1 + σzεz
t . (7)

We think of the material composite as the gray, or non-green, input. The energy com-
posite Et consists of fossil fuel ft and a green energy composite Gt, which are combined
by the final goods producer using a CES technology:

Et =

(
f

ρ−1
ρ

t + G
ρ−1

ρ

t

) ρ
ρ−1

. (8)

The parameter ρ is crucial: it governs the elasticity of substitution between fossil fuel and
the green energy composite. We assume ρ > 1, indicating that ft and Gt are substitutes.

The green energy composite Gt and the materials composite Mt each aggregate a con-
tinuum of differentiated inputs:

Mt =
(∫ AM

t

0
m

1
µM
ht dh

)µM
, Gt =

(∫ AG
t

0
g

1
µG
jt dj

)µG
, (9)

where, as in Romer (1990), AG
t and AM

t denote the number of available green energy and
materials varieties, respectively.

The final good producer’s optimization problem is:

max
Lt,{mht}, ft,{gjt}

Pt

[
(ZtLt)

αMβ
t E1−α−β

t

]
−
∫ AM

t

0
pm

ht mht dh −
∫ AG

t

0
pg

jt gjt dj − P f
t ft. (10)

Solving this problem yields the following demand equations:

mht =

(
pm

ht
PM

t

) µM
1−µM

Mt, gjt =

(
pg

jt

PG
t

) µG
1−µG

Gt, (11)

where PM
t =

(∫ AM
t

0 (pm
ht)

1
1−µM dh

)1−µM

and PG
t =

(∫ AG
t

0 (pg
jt)

1
1−µG dj

)1−µG

are the corre-

sponding price indices of Mt and Gt.
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Intermediate input producers. Intermediate input producers—firms that produce
non-green and green varieties, mht and gjt—maximize profits subject to the demand
equations in (11).

Green energy varieties. The green energy varieties are produced by a continuum of
firms operating under monopolistic competition. Each green variety gjt is indexed by
j ∈ [0, AG

t ]. Consider a generic variety j, its production uses a linear production technol-
ogy: each unit of green energy variety j requires one unit of final good

gjt = Y j
t , (12)

where Y j
t represent the final good used as inputs by variety j.

The profit maximization problem for producing this green energy variety is:

ΠG
jt = max

pg
jt

(
pg

jt gjt − gjt
)
, (13)

subject to the demand equation in (11).
We assume that each period, there is a fixed probability 1− ϕ that the variety becomes

obsolete. This is a reduced-form way to capture the notion that some varieties will be
replaced by better varieties over time. In Appendix C.12, we endogenize this to allow for
creative destruction in the spirit of Aghion and Howitt (1992).10

The value of owning the intellectual property (IP) right to produce the green variety j,
VG

jt , is thus given by:

VG
jt =

∞

∑
s=0

ϕs Et

[
Λt,t+s Πg

j,t+s

]
, (14)

where ΠG
jt is the period profit, as defined in (13). Given this setup, the value of owning

a green patent today is the expected sum of future profits ΠG
jt+s, discounted using the

discount factor Λt,t+s and adjusted by the survival probability ϕs.
IP values determine innovators’ incentives to innovate. We postpone the discussion

of innovators’ optimization problems to Section 3.3.

Non-green material varieties. Non-green material varieties are produced and sold similarly

10All our results go through in the quality ladder model, but the tractability of the expanding varieties
model allows us to derive some propositions in closed form. Specifically, when we endogenize the obso-
lescence rate, we are no longer able to obtain closed-form solutions for the allocation of skilled labor across
green and non-green innovation activities. See Appendix C.12 for more details.
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to green energy varieties. Each variety mht is indexed by h ∈ [0, AM
t ] and produced via a

linear technology:

mht = Yh
t , (15)

where Yh
t represents the final good used as inputs by non-green variety h.

The profit maximization problem for producing the non-green variety h is:

Πm
ht = max

pm
ht

(
pm

htmht −mht
)
, (16)

subject to the demand equation in (11). Similar to green varieties, each non-green variety
becomes obsolete with probability 1− ϕ.

The value of holding the IP rights to a non-green variety h satisfies:

VM
ht =

∞

∑
s=0

ϕs Et

[
Λt,t+s Πm

h,t+s

]
. (17)

Fossil fuel. We follow Acemoglu et al. (2016) to model the oil market as follows. Fossil fuel
is extracted by a set of competitive firms using final goods as the sole input. Extraction
follows a linear technology:

ft = ξ f · y f
t , (18)

where ft denotes the quantity of fossil fuel extracted in period t, ξ f > 0 governs the

productivity, and y f
t is the amount of final good allocated to extraction.

Let Rt denote the oil reserves at time t. The evolution of oil reserves is described by
the equation:

Rt+1 = Rt − ft, (19)

which indicates that oil reserves decrease over time as a result of extraction. The resource
constraint requires the oil reserves in the long run is non-negative:

lim
t→∞

Rt ≥ 0. (20)

This is a simple, reduced-form way of modeling the oil market. We assume fixed
marginal extraction costs, resulting in a constant fossil fuel price. Thus, any change in the
relative price of green energy arises from changes in the price of green energy itself.
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As robustness checks, we consider two alternative specifications of the oil market. In
Appendix C.10, we consider an extension that allows for technological progress in fossil
fuel extraction, following Aghion et al. (2016). This introduces some dynamic pricing con-
siderations, similar in spirit to Bornstein, Krusell, and Rebelo (2023). In Appendix C.11,
we implement an alternative formulation of extraction costs following Bornstein, Krusell,
and Rebelo (2023), in which costs are convex in the extraction rate. These extensions
illustrate that our results generalize to more realistic fossil market structures.

3.2. Green Is in the Future

The partial equilibrium setting allows us to distill some of the key mechanisms driving
the cyclicality of green and non-green patenting. We asssume that final and intermediate
goods firms maximize their profits, taking the evolution of AM

t and AG
t as given. We

restrict our analysis to an economy on a balanced growth path (BGP) where AM
t and AG

t

share the same long-run growth rate. For now, we assume that such a path exists. We will
discuss the existence and occurrence of a BGP when we move to the general equilibrium
setting.

We consider an economy undergoing a green transition. Along this transition path,
AG

t rises, leading to an increase in the green share of energy, Gt
Et

—despite the fact that
fossil reserves are not exhausted.

Lemma 3.1 (Condition for the Green Transition). Define the green transition as the process in
which the green share of energy, Gt

Et
, increases during the transition period. The economy undergoes

the green transition if and only if P f
t

PG
t

increases over time, where PG
t = µG(AG

t )
1−µG .

Proof. See Appendix D. ■

The intuition for the above lemma is straightforward: the green share of energy in-
creases over time if and only if the price of green energy, relative to the price of fossil fuel,
declines over time. In a Romer (1990)-type growth model, the total number of varieties
reflects productivity in the economy. Analogously, in our framework, AG

t captures the
productivity of green inputs. As a result, green innovations that increase AG

t raise the
productivity of green energy, lower its relative price, and induce final goods producers to
substitute toward green energy inputs.

Under our assumptions, this condition is trivially satisfied as the price of fossil energy
is fixed while the price of green decreases as AG

t increases. During the green transition,
the following proposition holds:
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Proposition 3.1 (Green Is in the Future). During the green transition:

(1) The equilibrium market share of green energy, given by PG
t Gt
PtYt

, increases over time.

(2) The relative profits of green varieties compared to non-green varieties, measured by ΠG
t

ΠM
t

, in-
crease over time.

Proof. See Appendix D. ■

Proposition 3.1 shows that, during the green transition, the equilibrium market share

of Gt, denoted by PG
t Gt
PtYt

, increases over time, and, green patents generate higher profits in
the future. We label this phenomenon as green is in the future. The intuition for this result
is as follows. As the share of green energy in total energy use rises, the overall market
share of green energy in the economy increases. This shift leads final good producers to
substitute away from fossil fuel toward green energy inputs. As a result, the demand
faced by each green input producer rises over time.11

Under monopolistic competition, this increase in demand translates into higher prof-
its. Consequently, the profitability of producing green inputs becomes increasingly con-
centrated in the future. This implies that the value of a green patent, VG

t , which reflects
the discounted sum of future profits, is more backloaded relative to that of non-green
patents.

The backloaded profit structure of green patents suggests that VG
t is less affected by an

exogenous, transitory disturbance to Yt than VM
t —holding discount rates and other prices

fixed. The key intuition is that business-cycle shocks operate at much shorter horizons
and thus do not affect cash flows further out in the future. Proposition 3.2 formalizes this

insight: the relative value of producing gjt, defined as VG
t

VM
t

, exhibits countercyclicality.

Proposition 3.2 (Cyclicality during the Green Transition). During the green transition, and

holding the discount factor constant, the relative value of producing gjt, defined as VG
t

VM
t

, exhibits

countercyclicality. Formally, d log VG
t

d log Yt
<

d log VM
t

d log Yt
, or equivalently

d log(VG
t /VM

t )
d log Yt

< 0.

Proof. See Appendix D. ■

So far, we have kept discount rates fixed. How do changes in discount rates affect the

11In a standard Romer (1990)-type model, the increase in aggregate demand due to the declining price
index is exactly offset by the increase in the number of varieties, so that the demand faced by each individual
variety producer remains constant. In contrast, in our model, green inputs gain an additional source of
demand by replacing fossil fuel in the energy mix. As a result, the demand for each green input producer
increases over time during the green transition.
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cyclicality of innovation? To shed light on this, we employ the following decomposition:

d log Vk
t

d log Yt
=

∞

∑
s=0

ϕs Λt,t+s,ssΠk
t+s,ss

Vk
t,ss

d log Πk
t+s

d log Yt︸ ︷︷ ︸
Cash flow channel

+
∞

∑
s=0

ϕs Λt,t+s,ssΠk
t+s,ss

Vk
t,ss

d log Λt,t+s

d log Yt︸ ︷︷ ︸
Discount rate channel

, (21)

for k = {M, G}, where Xt,ss captures the evolution of X along the transition, absent any
shocks, and Λt,t+s,ss = β

U′(Ct+s,ss)
U′(Ct,ss)

is the value of the stochastic discount factor (SDF) along
the transition path with no shocks. The first component captures the effect of changes in
cash flows, holding the discount factor fixed (see Proposition 3.2). The second component
captures changes in the discount rate, keeping the cash flows at the trajectory absent any
shocks.

While the cash flow channel unambiguously generates countercyclicality in VG
t /VM

t ,
the discount rate channel depends on the cyclicality of the SDF. As we show in Appendix
C.4, a procyclical stochastic discount factor dampens the countercyclicality of the rela-
tive valuation of green patents while a countercyclical SDF amplifies it. The intuition is
straightforward. If the discount factor falls in a recession—making agents discount the
future more—the IP values of green innovations are hurt more and not less than those of
non-green innovations because of the more backloaded structure.

The cyclicality of the SDF depends on the underlying shock driving the business cy-
cle. Our empirical evidence conditional on monetary policy shocks, suggests that the cash
flow channel dominates: such shocks imply a procyclical SDF, which works against the
countercyclicality of green innovation. In Section 3.5, we allow for the SDF to be endoge-
nously determined and show that the cash flow channel generally dominates the discount
rate channel.

The cyclicality of the green and non-green patent values determine the incentives to
innovate over the cycle. In the next section, we study the corresponding problem of the
innovators.

3.3. Innovators

There is a continuum of innovators indexed by i ∈ [0, 1]. Each existing green or non-
green variety, as described in the previous section, is created by one of these innovators.
Because the innovation decisions for each variety are independent of one another, we
need not track which innovator creates and owns which variety.

In each period, each innovator i engages in R&D to create new varieties. Upon suc-
cessfully developing a new variety, the innovator sells its IP rights at a price proportional
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to the value of owning the right to produce. We now describe this innovation process in
more detail.

Let LS
it,M and LS

it,G denote the skilled labor employed in R&D by innovator i for mate-
rials and green-energy innovation, respectively. φM

t and φG
t are the number of new tech-

nologies that each unit of skilled labor can create. Following Romer (1990), we assume the
innovation productivity depends on aggregate conditions, meant to capture knowledge
spillover effects:

φM
t = ζM AM

t

(
LS

t,M

)−(1−ν)
(22)

φG
t = ζG AG

t

(
LS

t,G

)−(1−ν)
(23)

where the terms AM
t and AG

t capture positive externalities from knowledge accumula-
tion, respectively. There is also a congestion externality: as more firms engage in R&D,
each one’s contribution becomes less effective due to competition for similar innovation
targets. This stength of this congestion externality is governed by ν ∈ [0, 1) and prevents
corner solutions in which all innovation is concentrated in a single type.

We assume that innovators pay a fixed setup cost, cVm
t,ss or cVg

t,ss, for each unit of new
innovation. These costs are proportional to the counterfactual value of intellectual prop-
erty in the absence of aggregate shocks. Specifically, Vm

t,ss and Vg
t,ss represent the expected

discounted value of IP rights, where the production profits are evaluated along the tran-
sition path of the economy in the absence of aggregate shocks. This modeling choice,
similar to the calibration strategy in Barlevy (2007), allows the model to generate realistic
cyclical responses of innovation investment while maintaining internal consistency be-
tween setup costs and expected value. In the following, we denote Vm

t = Vm
t − cVm

t,ss and
V g

t = Vg
t − cVg

t,ss.
In summary, an innovator i’s optimization problem can be expressed as:

max
LS

it,M

φM
t LS

it,MVm
t −Ws

t LS
it,M, (24)

max
LS

it,G

φG
t LS

it,GV
g
t −Ws

t LS
it,G, (25)

taking wages Ws
t and innovation productivity φM

t , φG
t as given.

Aggregation. Let SM
t = φt,MLt,M and SG

t = φt,GLt,G denote the aggregate successful
innovation for materials and green energy, respectively. The total amount of varieties
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then evolves as:

AM
t+1 = ϕAM

t + SM
t , (26)

AG
t+1 = ϕAG

t + SG
t . (27)

3.4. General Equilibrium

We now embed the production and innovation blocks into a general equilibrium setting.
This allows us to incorporate business cycle shocks, as examined in the empirical part
of the paper, and to analyze the cyclicality of innovation outcomes, rather than just their
incentives. More importantly, within this general equilibrium setting, a key mechanism
emerges that explains the striking countercyclical pattern of the numer of green patents
uncovered in our empirical analysis. To close the economy, we detail the household sector
and discuss market clearing.

Households. All households are identical, which is why we focus on the problem of a
representative household. The household derives utility over consumption Ct and labor.
They maximize lifetime utility

Et

∞

∑
t=0

βt
(

ϱD
t log Ct −

ω̄

1 + η
L1+η

t − ω̄s

1 + ψ
(Ls

t)
1+ψ

)
, (28)

where ϱD
t is the time-preference shock which follows:

log ϱd
t = ρd log ϱd

t−1 + σdεd
t . (29)

The household faces the following budget constraint:

PtCt + QtBt+1 = Bt + WtLt + Ws
t Ls

t + Dt. (30)

Here, Lt is the supply of unskilled labor and Ls
t is the supply of skilled labor with corre-

sponding wages Wt and Ws
t , Bt is a risk-free bond and Dt are transfers.

Market clearing. In general equilibrium, all markets have to clear. Labor market clear-
ing of skilled labor requires:

∫ 1

0

(
LS

it,G + LS
it,M

)
di = LS

t (31)
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Final good market market clearing:

Ct +
∫ AM

t

0
mht dh +

∫ AG
t

0
gjt dj + ξ−1

f ft = Yt. (32)

The remaining markets clear by Walras’ law.

Balanced growth. We assume that a BGP exists and that the economy is on a green tran-
sition path. In other words, we assume that the conditions stated in Lemma 3.1 hold. This
assumption is not restrictive. In our model, we will always be on a green transition path
in the absence of technological obsolescence—i.e., when ϕ = 1. With technological obso-
lescence (ϕ < 1), the green transition condition requires that the parameters governing
green innovation are such that the pace of green innovation exceeds the rate of obsoles-
cence. In our quantitative analysis, we confirm that this condition holds for empirically
plausible calibrations. In Appendix C.2, we provide a detailed discussion on existence.

3.5. The Role of General Equilibrium Effects

We now study the cyclicality of green and non-green patenting in general equilibrium.
We first start with our real model and consider preference ϱd

t and TFP shocks Zt. In a next
step, we introduce nominal rigidities and also study monetary policy shocks.

A key prediction form our partial equilibrium analysis is that the relative value of
green varieties is countercyclical during the green transition. As long as the SDF is
countercyclical—as implied by preference shocks under plausible parameterizations—
this is also always true in general equilibrium. The countercyclicality of green patent
values then implies that firms’ R&D investment in green, relative to non-green, is also

countercyclical. As a result, the green share of new varieties, SG
t

SG
t +SM

t
, is itself countercycli-

cal. Proposition 3.3 formalizes this result.

Proposition 3.3 (Countercyclical Green Share of New Varieties). During the green tran-

sition, the green share of new varieties, SG
t

SG
t +SM

t
, is countercyclical conditional on both, preference

and TFP shocks.

Proof. See Appendix D. ■

Proposition 3.3, however, does not only apply for shocks that imply a countercyclical
SDF: it also holds for technology and preference shocks that imply a procyclical SDF in
our model. In these cases, the discount rate channel could potentially overturn the cash
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flow channel. However, we show that the cash flow channel always dominates.12 Key to
this result is the assumption of log utility. If the intertemporal elasticity of substitution
is much lower, the discount rate channel becomes more powerful and the result could be
potentially overturned. In Section 4.1, we show that under empirically plausible param-
eterizations, the discount rate channel is dominated.

So far, we showed that the green is in the future channel can account for the counter-
cyclical share of green varieties. However, this channel alone is not enough to explain the
countercyclicality in the number of green varieties.

In general equilibrium, there is an additional effect at play, driven by changes in equi-
librium skilled wages. During recessions, skilled wages decline due to both increased
labor supply—households’ endogenous response to reduced consumption—and dimin-
ished labor demand, resulting from lower non-green innovation. The lower wage re-
duces the cost of green R&D, incentivizing firms to undertake more green innovation and
thereby offsetting the partial-equilibrium effect. Proposition 3.4 shows that, if the wage
elasticity of skilled labor with respect to output is sufficiently large, the number of new
green varieties becomes countercyclical in general equilibrium.

Proposition 3.4 (General Equilibrium Effects). During the green transition, there exists a
threshold ϵx > 0 such that green innovation is countercyclical, i.e.,

∂ log SG
t

∂ log Xt
< 0

if and only if the wage elasticity of skilled labor, ∂ log Ws
t

∂ log Xt
exceeds ϵx for X = Z, ϱd. By contrast,

non-green innovation is procyclical, that is, ∂ log SM
t

∂ log Xt
. Moreover, the threshold ϵx is decreasing in

the degree of countercyclicality in the relative valuation of green versus non-green innovation,
VG

t /VM
t .

Proof. See Appendix D. ■

For green innovation to be countercyclical, as observed in the data, the general equi-
librium effects through wages must offset the partial equilibrium effect of a recession on
the value of green patents. The latter depends on the strength of the Green Is in the Future
mechanism. Therefore, the condition is more easily satisfied when the relative value of
green varieties exhibits greater countercyclicality.

12To formally prove this, Appendix C.4 derives Proposition 3.2 within the general equilibrium model
featuring an endogenously determined stochastic discount factor.
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To further build intuition, Corollary 3.1 provides a sufficient condition, showing that
when the supply of skilled labor is sufficiently inelastic—that is, when the labor supply
curve is steep—the general equilibrium effect dominates, rendering the number of new
green varieties countercyclical.

Corollary 3.1. During the green transition, there exists a threshold ψx. If the Frisch elasticity of
labor supply ψ−1 is less than ψ

−1
x , then in equilibrium:

∂ log SM
t

∂ log Xt
> 0,

∂ log SG
t

∂ log Xt
< 0 (33)

for X = Z, ϱd.

Proof. See Appendix D. ■

Monetary policy shocks. So far, we have focused on a real economy in which money is
neutral. To be able to study the effects of monetary policy shocks, we extend the model
to include nominal rigidities, with retailers facing Rotemberg price adjustment costs (see
Appendix C.1 for details). We introduce monetary policy through a Taylor rule and in-
corporate a monetary shock ϱt, which follows an AR(1) process:

log ϱm
t = ρm log ϱm

t−1 + σmεm
t . (34)

A result similar to Proposition 3.4 holds conditional on monetary policy shocks:

Corollary 3.2. During the green transition, there exists a threshold ϵm > 0. If the wage elasticity
to output of skilled labor, ∂ log Ws

t
∂ log ϱm

t
, is greater than ϵm, then in equilibrium:

∂ log SM
t

∂ log ϱm
t

< 0,
∂ log SG

t
∂ log ϱm

t
> 0. (35)

Proof. See Appendix D. ■

4. Evaluating Model Predictions

The previous section analytically demonstrates that the model can qualitatively ratio-
nalize our empirical findings. In this section, we assess the model’s predictions quanti-
tatively. First, we show that under standard calibrations, the model can quantitatively
match the empirical findings. Second, we confront key model predictions with the data
and provide direct evidence supporting the model mechanisms.
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4.1. A Quantitative Exploration

To assess the quantitative predictions of the model, we calibrate the model to the U.S.
economy.

Calibration. We set the discount factor β to match a 2% annual interest rate. The fi-
nal good technology parameters αL, αM are set to 0.5 and 0.45, respectively, which cor-
responds to a 50% income share of intermediate inputs (Comin and Gertler 2006) and
matches a 5% energy share of income (Hassler, Krusell, and Olovsson 2021). The markup
parameters µM and µG are set to 2 to ensure the existence of a balanced growth path.

Following Acemoglu et al. (2012), we set the elasticity of substitution between green
energy and fossil fuels, ρ, to 3. The marginal cost of fossil fuel ξ f is normalized to 1. The
congestion externality parmeter ν is set to 0.5, following Anzoategui et al. (2019). The
technology obsolescence rate is set to 0.03, consistent with Comin and Gertler (2006) and
recent estimates from Ma (2021).

For labor supply elasticities, we set the Frisch elasticity of labor supply, 1/η, to 2, in
line with standard RBC calibrations (Kydland and Prescott 1982; King and Rebelo 1999),
to generate meaningful business cycle fluctuations. The inverse Frisch elasticity of skilled
labor supply—the key parameter determining the strength of the GE effects—is set to
ψ = 2. This is motivated by Chetty et al. (2011) and Elminejad et al. (2023) that estimate a
low labor supply elasticity for skilled, higher-wage workers. The scale parameter of labor
ω̄ and ω̄s is set to normalize the skilled and unskilled labor to 1 on the BGP.

Following Ottonello and Winberry (2020), we set φ = 90 and σ = 10. The Taylor
rule parameters are set to ϕπ = 1.69 and ϕA = 1, the latter fully offsetting fluctuations
in the medium-term component. We assume that supply and demand shocks are equally
important in driving the business cycle. For the underlying contributions of demand
shocks, we assume that preference shocks make up for 45% and monetary policy shocks
for 5%. We assume that all shocks are equally persistent, with ρx = 0.6. To jointly generate
a 1.2% standard deviation of output at business cycle frequency, we calibrate the standard
deviations of the shocks to σz = 0.01, σd = 0.005, and σm = 0.0005.

We internally calibrate ζM, ζG to match a 3% GDP growth rate on the BGP. The fixed
setup cost for innovation, c = 0.9, is calibrated to match a 2% standard deviation in
aggregate R&D expenditures from the national accounts at business cycle frequencies.
We start the green transition at an initial state where fossil fuel consumption accounts for
80% of the total energy consumption—a value comparable to the figure reported by the
U.S. Energy Information Administration.
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Figure 7: Green and non-green patenting responses in the model
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Notes: Impulse responses of the value and number of varieties of green and non-green patents to
a 25 basis point monetary policy shock, based on the green business cycle model calibrated to the
U.S. economy.

Impulse responses. We now turn to the model’s quantitative predictions. We focus
on the effects of a monetary policy shock for more direct comparison with the empirical
evidence. Figure 7 shows the impulse responses of green and non-green patenting to a 25
basis point monetary policy shock.

The IP value of a non-green new variety is significantly more sensitive to shocks than
that of a green variety, falling by over 1.5 times more after a contractionary monetary
policy shock. This result demonstrates the quantitative significance of our green is in the
future channel underlying Proposition 3.3.

Consistent with the change in the relative values of green and non-green varieties, the
green share among new varieties increases. The magnitude of this increase is around 0.3%
at peak—in line with the empirical response in Figure 3. Importantly, these moments are
not targeted in our calibration, illustrating the quantitative success of the model.

The model not only produces the countercyclicality of the green share, it also generates
the countercyclical response of the number of green varieties and the procyclical response
of the number of non-green varieties.13 This is the additional general equilibrium effect
via the inelastic supply of skilled labor at play. After a recessionary shock, innovative
activity falls, with a disproportionately larger drop in the non-green sector. This reduces
the demand for skilled labor, leading to a decline in wages for skilled workers. The lower
wages in turn decrease the cost of green R&D, incentivizing firms to undertake more
green innovation.

13Since there is no clear quantitative mapping between new varieties and new patents, we cannot directly
compare the magnitude of these responses to their empirical counterparts.
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Figure 8: Decomposition: Cash flow v.s. discount factor channel
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Notes: Impulse responses of the green share of new varieties and the number of new green vari-
eties to a 25 basis point monetary policy shock. We compare the baseline model (with both cash
flow and discount factor channels) to a counterfactual in which the discount factor channel is shut
down.

How powerful is the discount rate channel in our simulations? To shed light on this,
we perform a counterfactual exercise where we keep the discount rate fixed at its no-
shock trajectory.14

Figure 8 shows the results. We see that the discount rate channel works against the
green countercyclicality, conditional on monetary policy shocks. The reason is that these
shocks imply a procyclical SDF. When we shut the discount rate channel down, the green
share increases by over 0.35%, around 0.03 percentage points more relative to our baseline
response. The difference is even more pronounced when we look at the response of the
number of new green varieties.

Overall, these results illustrate that while the discount factor channel goes against
the cash flow channel, its quantitative impact is relatively modest. In Appendix C.6,
we examine the sensitivity of these results with respect to the intertemporal elasticity
of substitution. We show that the results are robust when we use a lower intertemporal
elasticity of substitution of 0.5, even though the magnitudes are somewhat smaller due to
the amplified discount rate channel.

In Appendix C.7, we study the responses to alternative shocks. Preference shocks are
of particular interest, as they can generate a countercyclical SDF such that the discount

14Specifically, we solve the model under the same equilibrium conditions using the calibrated parameters,
but impose an additional restriction that the discount factor in the value of innovation does not respond to
business cycle shocks.
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rate channel reinforces the green countercyclicality. We find that a negative preference
shock increases the degree of countercyclicality relative to a similarly sized contractionary
monetary policy shock—but only by about 8%—reaffirming that the cash flow channel
remains the dominant driver of the countercyclical pattern in green innovation (see Ap-
pendix Figure C.3).

How does the green is in the future channel depend on the starting point and speed
of the transition? In our baseline simulations, the economy begins its transition in 2010,
and our calibration implies that after 60 years, the transition is halfway completed. The
further along in the transition, the weaker the countercyclicality of the green patent share.
Interestingly, however, this relationship is not monotonic—the strongest countercyclical-
ity occurs roughly 25 years into the transition. Early on, the pace of green innovation
is slower and only picks up over time, making the increase in green profits more pro-
nounced later. Because of discounting, the slope of the profit profile matters: counter-
cyclicality is stronger when ’green is in the more immediate future’. See Appendix C.8
for details. For similar reasons, the countercyclicality of the green patent share is also
amplified when the overall speed of the transition is accelerated, see Appendix C.9.

Until now, we have considered a model with an exogenous obsolescence rate. In Ap-
pendix C.12, we extend the analysis to a quality-ladder model with creative destruction,
where the obsolescence rate is endogenous. Reassuringly, this extended model yields
very similar results, both qualitatively and quantitatively.

4.2. Evidence Supporting the Model Mechanism

In this section, we provide direct empirical evidence supporting the key mechanisms of
our model. We start by looking into the green is in the future channel. As discussed in
Section 3.2, this channel is active when the values of green patents are less cyclical than
those of non-green patents. This is a testable prediction that we can confront with the
data.

To test this prediction, we require information on the value of green and non-green
patents. We draw on the dataset by Kogan et al. (2017), who construct market-implied
value of patents filed with the USPTO based on the stock market response to news about
patents. We merge the information on patent values to our PATSTAT dataset (see Ap-
pendix A for more details).

Based on this data, we can then test the model’s prediction about the cyclicality of
patent values. We conduct two complementary exercises. First, we exploit panel variation
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in the patent data to estimate the relative cyclicality of green and non-green patent values:

valuej,i,t = αi + δt + θrt × greenj,i,t + ε j,i,t, (36)

where valuej,i,t corresponds to the (log) real value of patent j filed by firm i. We focus on
the federal funds rate, instrumented using high-frequency monetary surprises, but also
report results using GDP growth instead without conditioning on a specific shock. αi and
δt denote firm and time fixed effects, respectively. Since our goal is to estimate the relative
cyclicality of green and non-green patent values, captured by θ, the inclusion of time fixed
effects allows us to flexibly control for any time-varying common shocks. As quality is
homogeneous in the model, we include dummy variables for biadic patents, as well as
for patents with at least one citation.

Table 4: Relative cyclicality of green and non-green patent values in the data

Dependent variable: 100×log(patent valuej,i,t)

(1) (2) (3) (4)

∆GDPt × greenj,i,t -2.12∗∗∗ -2.05∗∗∗

(0.48) (0.61)

rt × greenj,i,t 2.48∗∗∗ 2.47∗∗∗

(0.52) (0.52)
Observations 1,256,917 1,256,917 1,256,917 1,256,917
Firm fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Quality controls No Yes No Yes

Notes: The relative cyclicality of green and non-green patent values, estimated based on the
patent-level regressions (36). Real patent values are sourced from Kogan et al. (2017), expressed
in logs. ∆GDPt corresponds to real GDP growth and rt is the policy rate, instrumented using
high-frequency monetary surprises. greenj,i,t is a dummy variable denoting green patents. We
consider a 1 percentage point increase in GDP growth and a 25 basis point increase in the policy
rate. Quality controls include dummy variables for biadic patents and patents with at least one
citation. Robust standard errors in parentheses, significance levels denoted by ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.10.

Table 4 reports the estimated coefficients. Consistent with the model’s prediction,
green patent values are less cyclical than non-green patent values: after a recessionary
shock, the value of green patents falls by significantly less than that of non-green patents.
This holds true both unconditionally using the GDP growth as well as when condition-
ing on monetary policy shocks. Moreover, the results are robust to excluding the quality
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controls.
Second, we construct firm-level patent valuations by tracking the market-implied

value of firms’ stock of green and non-green patents over time. Using these valuations,
we estimate firm-level green and non-green patent value responses to monetary policy
shocks based on the panel local projections model (3). To control for quality, we focus
only on biadic patents that received at least one citation in the construction of the firm-
level value indices.

Figure 9 shows that non-green patent values fall significantly and persistently after a
contractionary monetary policy shock. By contrast, the values of green patents are much
less affected: while they also tend to decline, the response is weaker and not statistically
significant. Notably, the magnitudes are roughly comparable to those obtained in our
calibrated model, as shown in Figure 7a.

Figure 9: Impulse responses of U.S. firms’ green and non-green patent values
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Notes: Impulse responses of firms’ green and non-green patent values in the United States to
a monetary policy shock, estimated based on the panel local projections model (3) using high-
frequency monetary surprises as an instrument. The dependent variable is the cumulative real
value of firm-level patents, sourced from Kogan et al. (2017), separately computed for green and
non-green patents and expressed in logs. The shock is normalized to increase the federal funds
rate by 25 basis points on impact. Solid line: point estimate. Dark and light shaded areas: 68 and
95% confidence bands based on Driscoll and Kraay (1998) standard errors.

Next, we aim to shed light on the general equilibrium effects via the market of skilled
labor. Our model predicts a decline in non-green patenting during business cycle down-
turns, depressing wages of skilled workers and thus making it cheaper for firms to engage
in green innovation. To test this prediction in the data, we use PATSTAT data on inven-
tors referenced in patent filings. This allows us to classify green and non-green inventors
based on what patents they worked on.

Equipped with these data, we aggregate the number of green and non-green inventors

40



at the firm-level and construct the share of green inventors. We then trace their dynamic
responses to monetary shocks, using the panel local projections model (3). Figure 10
shows a significant increase in the number and share of green inventors. We find that at
least part of this increase is driven by new inventors, i.e. inventors that have not patented
at the firm previously (see Appendix B.9). These results are consistent with the general
equilibrium effects via the skilled labor market that operate in our model.

Figure 10: Firm-level responses of green inventors
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Notes: Responses of the share and number of green inventors in U.S. firms to a monetary policy
shock, estimated based on the panel local projections model (3) using high-frequency monetary
surprises as an instrument. The shock is normalized to increase the federal funds rate by 25 basis
points on impact. Solid line: point estimate. Dark and light shaded areas: 68 and 95% confidence
bands based on Driscoll and Kraay (1998) standard errors.

Overall, this evidence corroborates our model mechanisms that allow us to generate
the countercyclicality of the green patent share and the number of green patents.

5. Conclusion

This paper documents a novel empirical fact: while non-green innovation is procyclical,
green innovation is countercyclical. Not only is green patenting less affected by recession-
ary shocks, the number of green patents even tends to rise during downturns. This pat-
tern holds across aggregate and firm-level data, within the U.S. and internationally, and
persists when conditioning on different types of macroeconomic shocks. These findings
challenge the conventional view that innovation declines uniformly in recessions and call
for a deeper understanding of the distinct economic forces shaping green technological
progress.

To explain these patterns, we develop a business cycle model with endogenous green
and non-green innovation. At the core of the model is the green is in the future chan-
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nel: along the transition, green patents yield profits that are more backloaded than non-
green ones, making their value less sensitive to transitory macroeconomic shocks. In gen-
eral equilibrium, this effect is reinforced through reallocation in the skilled labor market.
When downturns depress non-green innovation, the resulting decline in skilled wages
lowers the cost of green R&D, further boosting green innovation. Our model not only
accounts for the relative and absolute cyclicality observed in the data but is also sup-
ported by direct evidence on underlying mechanisms—specifically, the weaker cyclicality
of green patent values and the reallocation of inventors toward green technologies during
recessions.

Our results underscore the importance of understanding how macroeconomic fluctua-
tions interact with the green transition. While green innovation is often framed as a long-
run structural challenge, our findings highlight its sensitivity to short-run dynamics. This
has several important implications. First, it matters for interpreting progress on the green
transition in the data: business cycle fluctuations may lead to temporary slowdowns or
accelerations in green innovation that do not reflect changes in long-run fundamentals.
Misinterpreting these short-term fluctuations could lead policymakers to draw incorrect
conclusions about the pace of the transition. Second, our findings shed light on the trans-
mission mechanism of climate change policies, including carbon pricing. If such policies
have contractionary effects on the broader economy, these forces could amplify the posi-
tive impact on green innovation according to our findings. Finally, because recessionary
shocks can spur green innovation, it is important to account for macroeconomic condi-
tions when estimating the causal effects of climate policies—otherwise, business cycle
dynamics may confound the interpretation of empirical evidence.
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Jarociński, Marek and Peter Karadi (2020). “Deconstructing monetary policy sur-
prises—the role of information shocks”. American Economic Journal: Macroeconomics
12.2, pp. 1–43.

Jordà, Òscar (2005). “Estimation and inference of impulse responses by local projections”.
American Economic Review 95.1, pp. 161–182.

Jordà, Òscar, Sanjay R. Singh, and Alan M. Taylor (2024). “The long-run effects of mon-
etary policy”. Review of Economics and Statistics, pp. 1–49.

Kahle, Kathleen M. and René M. Stulz (2017). “Is the US public corporation in trouble?”
Journal of Economic Perspectives 31.3, pp. 67–88.

45



Känzig, Diego R. (2023). “The unequal economic consequences of carbon pricing”. Avail-
able at SSRN 3786030.

King, Robert G. and Sergio T. Rebelo (1999). “Resuscitating real business cycles”. Hand-
book of macroeconomics 1, pp. 927–1007.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman (2017). “Tech-
nological innovation, resource allocation, and growth”. The Quarterly Journal of Eco-
nomics 132.2, pp. 665–712.

Kung, Howard and Lukas Schmid (2015). “Innovation, growth, and asset prices”. The
Journal of Finance 70.3, pp. 1001–1037.

Kydland, Finn E. and Edward C. Prescott (1982). “Time to build and aggregate fluctua-
tions”. Econometrica: Journal of the Econometric Society, pp. 1345–1370.

Ma, Song (2021). Technological obsolescence. Tech. rep. National Bureau of Economic Re-
search.

Ma, Yueran and Kaspar Zimmermann (2023). Monetary policy and innovation. Tech. rep.
National Bureau of Economic Research.
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A. Data

In this appendix, we provide additional information on the sources and the construction
of our sample. We discuss the sources for the patent and firm-level data as well as how we
match patents to firms. Finally, we provide details on how we aggregate the patent data,
as well as the supplementary macroeconomic and financial data used in our analyses.

A.1. Patent Data

Our main source of patent data is the World Patent Statistical Database (PATSTAT), which
encompasses bibliographic information for close to the universe of patents globally. We
use the autumn 2023 edition (version 5.22).

We follow the previous literature (e.g. Hémous et al., 2025) to focus on patent families,
i.e. patents representing the same innovation filed at different patent offices. For each
patent family we use the original application date to capture the time of the innovation
and assign nationality based on the respective filing office.

To measure green innovation, we use International Patent Classification (IPC) and Co-
operative Patent Classification (CPC) codes. Specifically, we apply the OECD definition
(Migotto and Haščič, 2015) to classify patent families in subclass Y02 of the C/IPC, which
includes technologies that reduce greenhouse gases. Following Acemoglu et al. (2023),
we exclude technologies that do not directly compete with fossil-fuel technologies, in-
cluding those aimed at reducing pollution from fossil-fuel electricity generation (Y02E20),
improving grid efficiency (Y02E40) or storage (Y02E60). We classify patent families with
multiple C/IPC codes as green if any of the respective codes meet our criteria. We treat
the remaining patent (families) as non-green.

Table A.1: Green patents by CPC code, 1986-2019

CPC code Description Number of patents Share of sample

Y02E Production, distribution and transport of energy 109,682 35.93
Y02T Transportation 63,053 20.66
Y02P Industry and agriculture 61,760 20.23
Y02A Adaptation to climate change 34,258 11.22
Y02B Buildings 32,598 10.68
Y02D ICT aiming at reduction of own energy use 31,350 10.27
Y02W Wastewater treatment or waste management 14,995 4.91
Y04S Smart grids 9,832 3.22
Y02C Capture and storage of greenhouse gases 4,416 1.45

Notes: Based on USPTO patent families.
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What are the most salient green subclasses? Table A.1 shows that the majority of green
patent filings in our data are associated with production, distribution and transport of
energy (Y02E), transportation (Y02T), and industry and agriculture (Y02P).

Table A.2: Example of a green patent family by Hitachi Ltd.

Patent number Patent name Filing date CPC codes

US7185722 Power transmission
apparatus of motor
vehicles

01.09.2000 B60W 20/00, B60K 6/442, B60K 6/48, B60K 6/547,
B60W 10/02, B60W 10/06, B60W 10/08, B60W
10/10, F16D 25/0638, F16H 3/089, F16H 61/0437,
Y02T 10/6221, Y02T 10/6234, Y02T 10/6286, Y10S
903/914, Y10S 903/917, Y10S 903/919, Y10S 903/945,
Y10S 903/946, Y10T 74/19014, Y10T 74/19242, Y10T
74/19284, Y10T 477/23

EP1122111 A power transmis-
sion apparatus for
hybrid vehicles

04.09.2000 B60K 6/442, B60K 6/48, B60K 6/547, B60W 10/02,
B60W 10/06, B60W 10/08, B60W 10/10, B60W 20/00,
F16H 3/089, F16H 61/0437, Y10S 903/945, Y10S
903/946, Y10S 903/914, Y10S 903/917, Y10S 903/919,
Y10T 74/19014, Y10T 74/19284, Y10T 74/19242, Y02T
10/62, B60K 2006/268, B60K 17/02, F16D 25/0638

DE000060021163 Antriebsübertragungs-
vorrichtung für
Hybridfahrzeuge

04.09.2000 B60K 6/442, B60K 6/48, B60K 6/547, B60W 10/02,
B60W 10/06, B60W 10/08, B60W 10/10, B60W 20/00,
F16H 3/089, F16H 61/0437, Y10S 903/945, Y10S
903/946, Y10S 903/914, Y10S 903/917, Y10S 903/919,
Y10T 74/19014, Y10T 74/19284, Y10T 74/19242, Y02T
10/62, B60K 2006/268, B60K 17/02, F16D 25/0638

KR1020010077862 Power transmission
apparatus of motor
vehicles

04.09.2000 B60W 20/00, B60K 6/442, B60K 6/48, B60K 6/547,
B60W 10/02, B60W 10/06, B60W 10/08, B60W
10/10, F16D 25/0638, F16H 3/089, F16H 61/0437,
Y02T 10/6221, Y02T 10/6234, Y02T 10/6286, Y10S
903/914, Y10S 903/917, Y10S 903/919, Y10S 903/945,
Y10S 903/946, Y10T 74/19014, Y10T 74/19242, Y10T
74/19284, Y10T 477/23

EP1122110 A power transmis-
sion apparatus of
motor vehicles

02.02.2001 B60K 6/442, B60K 6/48, B60K 6/547, B60W 10/02,
B60W 10/06, B60W 10/08, B60W 10/10, B60W 20/00,
F16H 3/089, F16H 61/0437, Y10S 903/945, Y10S
903/946, Y10S 903/914, Y10S 903/917, Y10S 903/919,
Y10T 74/19014, Y10T 74/19284, Y10T 74/19242, Y02T
10/62, B60K 2006/268, B60K 17/02, F16D 25/0638

US20010042647 Power transmission
apparatus of motor
vehicles

02.02.2001 B60W 20/00, B60K 6/442, B60K 6/48, B60K 6/547,
B60W 10/02, B60W 10/06, B60W 10/08, B60W
10/10, F16D 25/0638, F16H 3/089, F16H 61/0437,
Y02T 10/6221, Y02T 10/6234, Y02T 10/6286, Y10S
903/914, Y10S 903/917, Y10S 903/919, Y10S 903/945,
Y10S 903/946, Y10T 74/19014, Y10T 74/19242, Y10T
74/19284, Y10T 477/23

KR1020010078264 Power transmission
apparatus of motor
vehicles

02.02.2001 B60W 20/00, B60K 6/442, B60K 6/48, B60K 6/547,
B60W 10/02, B60W 10/06, B60W 10/08, B60W
10/10, F16D 25/0638, F16H 3/089, F16H 61/0437,
Y02T 10/6221, Y02T 10/6234, Y02T 10/6286, Y10S
903/914, Y10S 903/917, Y10S 903/919, Y10S 903/945,
Y10S 903/946, Y10T 74/19014, Y10T 74/19242, Y10T
74/19284, Y10T 477/23

JP2001287555 Power transmission
of automobile

02.02.2001
Y02T 10/62, Y02T 10/7072

Notes: For more information, see https://patentscope.wipo.int/search/en/detail.jsf?docId=US41976272.
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To illustrate how we handle patent families, Table A.2 provides an example of a patent
family related to a power transmission apparatus for hybrid vehicles by Hitachi Ltd. filed
at five different patent offices. The patent family is classified as green because it includes
multiple CPC codes in subclass Y02T. Because the first patent was filed with the USPTO,
we treat it as a U.S. patent and use September 2000 as the relevant date.

Finally, in Table A.3, we provide a number of additional examples of green patents,
specifically related to photovoltaic and solar technologies.

Table A.3: Examples of green patents related to photovoltaic and solar technologies

Patent number Patent name Applicant Filing date CPC
codes

US5959787 Concentrating coverglass for
photovoltaic cells

The Boeing Com-
pany

26.11.1996 Y02E

US6461947 Photovoltaic device and making
of the same

Hitachi, Ltd. 07.09.2000 Y02E,
Y02P

US20070267290 Photovoltaically powered ca-
thodic protection system for au-
tomotive vehicle

Ford Global Tech-
nologies, LLC

16.05.2006 Y02T

US20180054064 Smart main electrical panel for
energy generation systems

Tesla, Inc. 29.09.2016 Y02B,
Y02E

PATSTAT also reports information on patent citations. We compute citation counts at
the family level, excluding any self citations within the same family. To measure quality,
we additionally define biadic patents, filed with at least two of the three major patent
offices (USPTO, EPO and JPO).

A.2. Firm Data

We rely on Compustat North America for accounting data on listed U.S. companies. Fol-
lowing Cloyne et al. (2023) we exclude Compustat companies in the finance, insurance,
real estate and public administration sectors and drop firms which report data for fewer
than 20 quarters, or have missing investment or sales figures for more than 20 quarters.
We measure firm age using the date of incorporation, which we supplement from Thom-
son Reuter’s WorldScope.

In contrast to Cloyne et al. (2023), we only exclude firms with negative or missing
age when we explicitly study firm heterogeneity, including the effects on younger and
older firms. Otherwise, we retain firms even if the age variable is negative.1 We limit our

1The age data are noisy, e.g. because of firm mergers and acquisitions. The firm-level estimates are
consistent when we apply more restrictive criteria.
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attention to years with consistent reporting, starting in 1986Q1.
Table A.4 shows how we construct the key firm-level variables of interest based on the

Compustat data. To limit the impact of outliers, we winsorize the book-to-market ratio at
the 1st and 99th percentile in each year. We also merge data on firm-level emissions from
Trucost using company ISIN codes. We focus on the Scope 1 GHG emission intensity
(scaled by revenue), which is available for roughly half of the companies in our dataset.

Table A.4: Definitions of firm-level variables

Variable Compustat definition

Size atq
Investment capxq/ppentq
Leverage ratio (dlcq+dlttq)/atq
Book-to-market ceqq/(prccq*cshoq)
R&D intensity xrdq/atq
Short term debt dlcq/(dlcq+dlttq)
Tobin’s Q (tq + prccq*cshoq - ceqq + txditcq) / atq

A.3. Matching Patents to Firms

Measuring U.S. firms’ innovation activity requires matching patents to firm-level data. To
maximize the number of successful matches, we rely on two different datasets. The first is
Orbis Intellectual Property, which links global patent portfolios to Orbis companies (see
Hémous et al., 2025). We map Orbis to Compustat companies using the ISIN identifier,
which implies we are measuring innovation at the U.S. group level.

Second, we also employ the mapping by Arora, Belenzon, and Sheer (2021), which
establishes a link between USPTO patents and Compustat firms based on a fuzzy match-
ing approach and extends the NBER patent database (Hall, Jaffe, and Trajtenberg, 2001).2

Combining the matches in both datasets we are able to link 1.7 million distinct patent
families to Compustat firms, including about 93,000 green patents.3

We use the unique patent application number encompassed in both datasets to merge
the relevant information from PATSTAT. In particular, we construct firm-level patent
counts for green and non-green patents at quarterly frequency. To that end, we retain
patents filed with the USPTO and international filings.

2For more details on the approach, see Arora et al. (2024).
3Reassuringly, the two mappings overlap significantly: Orbis identifies 1.296 million total (73,600 green)

patents, while applying Arora, Belenzon, and Sheer (2021) results in 1.094 million total (58,000 green)
matched patents.
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In addition to patent counts, we are also interested in quantifying patent values. We
therefore match our firm-level data with market-implied patent value data constructed by
Kogan et al. (2017), extended to 2020. Consistent with our earlier definition, we focus on
the first patent in a patent family to infer its value, but verify that taking an average value
does not impact our results. Lastly, to dynamically study the value of firms’ innovation,
we construct cumulative value indices for green and non-green patents at the firm-level.

A.4. Aggregate Patent Counts

In order to assess the correlation of innovation activity with the business cycle, we com-
pute aggregate patent counts. First, we construct separate series for U.S. green and non-
green patents based on USPTO filings. Second, we compute similar patent counts for
OECD countries, including filings with the respective national offices and the EPO. For
the OECD, we also include international applications filed under the Patent Cooperation
Treaty, but verify that excluding them does not impact our estimates. Finally, we construct
counts at the global level, exploiting all available information in PATSTAT.

Third, since Compustat covers close to the universe of listed companies in the U.S., we
can also aggregate our matched firm-level patents to compute separate counts for listed
and unlisted U.S. firms. Compustat accounts for 97-99% of market capitalization of all
listed firms in the U.S. between 1975-2015 according to Kahle and Stulz (2017). Because
we assign patent nationality based on the original patent office, we expect that filings by
foreign corporations are modest.

To control for potential seasonality, we apply an X-11 filter to our constructed aggre-
gate patent counts.

A.5. Macroeconomic Data

We complement the innovation and firm-level data with a set of aggregate macroeco-
nomic and financial variables, listed in Table A.5.
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Table A.5: Macro data description and sources

Variable Description Source

U.S. data
Monetary surprise Purified high-frequency monetary surprises from

Bauer and Swanson (2023)
Michael Bauer’s
website

Excess bond premium Gilchrist and Zakrajšek (2012) FRB website
Monetary surprise Jarociński and Karadi (2020) Marek Jarocinski’s

website
Oil supply shock Känzig (2021) Diego Känzig’s web-

site
TFP Fernald (2014) San Francisco Fed
Climate policy news index Gavriilidis et al. (2025) mimeo
Climate news index Engle et al. (2020) Johannes Stroebel’s

website
Federal funds rate FEDFUNDS FRED
Real GDP GDPC1 FRED
GDP deflator GDPDEF FRED
Unemployment rate UNRATE FRED
Industrial production INDPRO FRED
1-year rate GS1 FRED
Investment A008RA3Q086SBEA FRED
Oil price WTISPLC FRED
Government spending GCEC1 FRED

OECD data
Industrial production Global IP index by Baumeister and Hamilton (2019) Christiane Baumeis-

ter’s website
Real GDP Based on 19 OECD countries OECD
GDP deflator Based on 19 OECD countries OECD
Unemployment rate Based on 9 OECD countries with consistent data OECD

Notes: Due to data limitations, we construct the unemployment series based on data from 9 major
OECD countries that consistently report since 1986. These countries include the United States,
Germany, Japan, Australia, the United Kingdom, New Zealand, Chile and Canada.
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B. Additional Charts and Tables

In this appendix, we report a number of additional results, as well as robustness checks.

B.1. Green Innovation by the 20 Largest Green U.S. Innovators

Table B.1: Green patenting by the 20 largest green innovators

Patenting measure

Company Total patents Green patents Green patent share

RTX CORP 35,780 6,197 17.32
FORD MOTOR CO 24,275 5,839 24.05
GENERAL MOTORS CO 29,376 5,148 17.52
INTEL CORP 60,630 4,116 6.79
INTL BUSINESS MACHINES CORP 129,491 3,797 2.93
QUALCOMM INC 39,358 3,235 8.22
BOEING CO 20,761 2,824 13.60
CATERPILLAR INC 12,321 1,890 15.34
HP INC 52,319 1,872 3.58
APPLE INC 26,243 1,711 6.52
DU PONT (E I) DE NEMOURS 19,877 1,569 7.89
EXXON MOBIL CORP 11,152 1,429 12.81
MOTOROLA SOLUTIONS INC 27,752 1,255 4.52
MICROSOFT CORP 55,076 1,192 2.16
CUMMINS INC 4,350 1,181 27.15
TEXAS INSTRUMENTS INC 25,256 1,176 4.66
CORNING INC 12,311 983 7.98
ADVANCED MICRO DEVICES 16,560 901 5.44
APPLIED MATERIALS INC 15,821 889 5.62
LOCKHEED MARTIN CORP 10,154 812 8.00

Notes: The table reports patent measures for the 20 largest innovators in the U.S. between 1986–
2019, based on green patent counts.
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B.2. Unconditional Cyclicality using Alternative Economic Indicators

Figure B.1: Patenting responses to business cycle shock
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(b) Unemployment rate
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Notes: Impulse responses of total patents and the green patent share in the United States to a
recessionary innovation to industrial production (normalized to decrease growth in IP by 1%)
and the unemployment rate (normalized to increase the unemployment rate by 25 basis points),
estimated based on the reduced-form local projections (1). Solid line: point estimate. Dark and
light shaded areas: 68 and 95% confidence bands based on lag-augmented standard errors.
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B.3. Responses of Macroeconomic Variables to Monetary Policy Shock

Figure B.2: Macroeconomic effects of a U.S. monetary policy shock
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Notes: Macroeconomic effects of a U.S. monetary policy shock, estimated based on the local pro-
jections model (2) using high-frequency monetary surprises as an instrument. The shock is nor-
malized to increase the federal funds rate by 25 basis points on impact. Solid line: point estimate.
Dark and light shaded areas: 68 and 95% confidence bands based on lag-augmented standard er-
rors.
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B.4. Additional Results for Listed and Unlisted U.S. Firms

Figure B.3: Cyclical component of green and non-green patents by U.S. companies

-.4

-.2

0

.2

.4

C
yc

lic
al

 c
om

po
ne

nt

1985 1990 1995 2000 2005 2010 2015 2020

Green patents
Non-green patents

Listed companies

-.4

-.2

0

.2

.4

C
yc

lic
al

 c
om

po
ne

nt

1985 1990 1995 2000 2005 2010 2015 2020

Green patents
Non-green patents

Unlisted companies

Notes: Cycles in green and non-green patenting for listed (left panel) and unlisted (right panel)
U.S. companies. The panels display the cyclical components of green and non-green patent counts,
extracted using the Hodrick-Prescott filter with λ = 1, 600.
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Figure B.4: Green and non-green patenting responses for listed and unlisted U.S. firms

(a) Listed firms

-5

0

5

Pe
rc

en
t

0 4 8 12 16 20

Quarters

Number of green patents

-10

-5

0

5

Pe
rc

en
t

0 4 8 12 16 20

Quarters

Number of non-green patents

(b) Unlisted firms
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Notes: Impulse responses of green and non-green patents by listed and unlisted U.S. firms to a
monetary policy shock, estimated based on the local projections model (2) using high-frequency
monetary surprises as an instrument. The shock is normalized to increase the federal funds rate
by 25 basis points on impact. Solid line: point estimate. Dark and light shaded areas: 68 and 95%
confidence bands based on lag-augmented standard errors.
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B.5. Additional Results for OECD Countries and Global Patents

Figure B.5: Green and non-green patenting responses in different geographies
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(b) Worldwide
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Notes: Impulse responses of green and non-green patents in different geographies to a U.S. mon-
etary policy shock, estimated based on the local projections model (2) using high-frequency mon-
etary surprises as an instrument. Left panels: OECD countries. Right panels: patents worldwide.
The shock is normalized to increase the federal funds rate by 25 basis points on impact. Solid
line: point estimate. Dark and light shaded areas: 68 and 95% confidence bands based on lag-
augmented standard errors.

B.6. Additional Results Using Raw Patent Counts

In our baseline analysis, we apply a one-quarter moving average to the aggregate patent
counts to mitigate noise in the patent data. Here, we estimate the local projection models
(1) and (2) based on the raw patent counts. As Figures B.6 and B.7 show that the impulse
responses to the business cycle and monetary policy shocks are robust to using raw patent
counts.
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Figure B.6: Patenting responses to business cycle shocks using raw patent counts
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Notes: Impulse responses of green and non-green patents using raw patent counts, estimated
based on the reduced-form local projections (1). The shock is normalized to decrease GDP growth
by 1% on impact. Solid line: point estimate. Dark and light shaded areas: 68 and 95% confidence
bands based on lag-augmented standard errors.
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Figure B.7: Patenting responses to monetary policy shocks using raw patent counts
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Notes: Impulse responses of green and non-green patents using raw patent counts, estimated
based on the local projections model (2) using high-frequency monetary surprises as an instru-
ment. The shock is normalized to increase the federal funds rate by 25 basis points on impact.
Solid line: point estimate. Dark and light shaded areas: 68 and 95% confidence bands based on
lag-augmented standard errors.

B.7. Alternative Shock Measures

Our baseline analysis relies on a local projections approach using the monetary surprises
by Bauer and Swanson (2023) as an instrument. The left panel in Figure B.8 shows similar
dynamic responses of the U.S. green patent share, estimated using the monetary surprises
by Jarociński and Karadi (2020) as an instrument.

As alternative shock measures, the right panel in Figure B.8 considers the impacts of
oil supply shocks on the green patent share. Specifically, we use the oil supply shock
identified in Känzig (2021) as an instrument for the real oil price in an otherwise identi-
cal empirical setup. The responses, normalized to increase the real oil price by 10 USD,
display a similarly persistent increase as in our main analysis.
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Figure B.8: Patenting responses to alternative macroeconomic shocks
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Notes: Green patenting responses to alternative monetary policy and oil supply shocks. Left panel:
monetary policy shock, identified using the Jarociński and Karadi (2020) monetary surprises, nor-
malized to increase the policy rate by 25 basis points. Right panel: Oil supply news shock, identi-
fed using the OPEC surprise series by Känzig (2021), normalized to increase the (real) WTI crude
price by 10 USD. Solid line: point estimate. Dark and light shaded areas: 68 and 95% confidence
bands based on lag-augmented standard errors.
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B.8. Evidence on USPTO Patent Renewals

We argue that green patents have a more backloaded profit structure along the green
transition. To corroborate this assumption, we exploit information on the maintenance
fee payments maintained by the USPTO. Patents need to be renewed after 3.5, 7.5 and
11.5 years in order to remain active. Therefore, patent renewal decisions reflect the value
that firms assign to a given innovation over time.

We begin by estimating a logistic regression at the patent-level:

P(renewal)i,t = α + δt + θgreeni,t + εi,t, (1)

where P(renewal)i,t corresponds to the probability that patent i filed in quarter t is re-
newed. δt denotes a set of time fixed effects. To control for patent quality, we include
dummy variables for biadic patents and patents with at least one citation.

In addition, we estimate OLS regressions using patent duration (expressed in years)
as the dependent variable. Lastly, we construct patent maintenance scores, which take on
a value between 0 and 3 depending on the number of renewals (Porter et al., 2023). We
focus on patents filed before 2010 to allow for up to three recorded renewal decisions.

Table B.2: Evidence on patent renewal decisions

Logit OLS

Dependent variable: P(renewal)i,t Durationi,t Maintenance scorei,t

(1) (2) (3)

greeni,t 0.36∗∗∗ 0.36∗∗∗ 0.09∗∗∗

(0.01) (0.01) (0.00)

Observations 3,652,350 3,652,350 3,652,350
Pseudo R2 0.07 0.06 0.06
Quality controls Yes Yes Yes
Time fixed effects Yes Yes Yes

Notes: The table shows coefficients from a regression of patent renewal metrics on a dummy
variable, greeni,t denoting green patents. Column (1) is estimated using a logistic regression, (2)-
(3) are based on OLS. Quality controls include dummy variables for biadic patents and patents
with at least one citation. All regressions include a constant, with the coefficient not reported for
brevity. Robust standard errors in parentheses, significance levels denoted by ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.10.

Table B.2 presents the results. We find that green patents are more likely to be renewed
and remain active for longer relative to non-green patents, controlling for patent quality.
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These results suggest that green patents carry a higher value at later stages of their life
cycle compared to non-green patents.

B.9. Evidence on Green Inventors

One key insight from the model is that during business cycle downturns, a decline in
non-green patenting depresses wages of skilled workers, making it cheaper for firms to
engage in green innovation. We have seen some evidence that the share and number of
non-green inventors increases at the firm-level.

One drawback of this approach is that it does not distinguish between existing and
new green inventors. To address this issue, we separately analyze the number of new
green inventors who are linked to a green patent for the first time in a given quarter.
Lastly, we construct the share of new green inventors relative to the total number of in-
ventors who have not been linked to a green patent before. Consistent with the channel
emphasized in the model, Figure B.9 suggests an increase in both measures in response
to a monetary shock.

Figure B.9: Firm-level responses of new green inventors
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Notes: Responses of new green inventors to a monetary policy shock, estimated based on the
panel local projections model (3) using high-frequency monetary surprises as an instrument. The
measures are restricted to inventors who have not been linked to a green patent before. The shock
is normalized to increase the federal funds rate by 25 basis points on impact. Solid line: point
estimate. Dark and light shaded areas: 68 and 95% confidence bands based on lag-augmented
standard errors.
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B.10. Alternative Green Patent Classifications

Our baseline classification of green patents follows Acemoglu et al. (2023) to include Y02,
excluding Y02E20, Y02E40 and Y02E60. Figure B.10 verifies that the responses in the U.S.
are robust to alternative classifications. First, we include all Y02E subclasses of the CPC,
which leads to comparable responses. Second, following Calel and Dechezleprêtre (2016),
we check that including smart grid technologies (CPC class Y04S) does not meaningfully
impact our estimates.

Figure B.10: Patenting responses using alternative green patent classifications
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Notes: Impulse responses of the share and number of green patents to a monetary policy shock
for alternative definitions of green patents. Responses are estimated based on the local projections
model (2) using high-frequency monetary surprises as an instrument. The orange dotted lines
include Y02E and yellow dashed lines include Y02E and Y04S as green. The shock is normalized
to increase the federal funds rate by 25 basis points on impact. Lines: point estimate. Shaded
areas: 68 and 95% confidence bands for the baseline estimates.
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B.11. Controlling for Fiscal Policy and Investor Demand

In our local projections, we flexibly capture prevailing macro-financial conditions with
a set of control variables. In this appendix, we expand on the robustness checks in Sec-
tion 2 to rule out two additional, potentially confounding channels related to changes in
demand for green technologies and fiscal policy.

First, changing opinions on climate change and environmental policies could be a
driver of green innovation. We include two indices, Engle et al. (2020) and Gavriilidis et
al. (2025), that capture mentions of climate change (policies) in major US newspapers. We
also control for the oil price, which could influence firms’ decisions to invest in green tech-
nologies. The top two panels of Figure B.11 show that the estimated impulse responses
are comparable.

Second, we rule out that the U.S. fiscal policy stance, which increasingly tries to pro-
mote green investments (such as Obama’s American Recovery and Reinvestment Act of
2009, or Biden’s Inflation Reduction Act of 2022) impacts our estimates. To that end, we
separately include government spending, a dummy for democratic presidents (which are
more likely to prioritize green spending), as well as their interaction in the local projec-
tions. The responses are close to the baseline estimates (bottom panel of Figure B.11).
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Figure B.11: Robustness with respect to patent quality
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Notes: Green patenting responses to a monetary policy shock with alternative set of controls. Re-
sponses are estimated based on the local projections model (2) using high-frequency monetary
surprises as an instrument. Top panels: controlling for the climate news index by Engle et al.,
2020 (yellow dashed line), the climate policy news index (orange dotted line) and the oil price
(blue line). Bottom panels: controlling for government spending (orange dotted line), a dummy
for democratic presidents (yellow dashed line) and their interaction (blue line). The shock is nor-
malized to increase the federal funds rate by 25 basis points on impact. Lines: point estimates.
Shaded areas: 68 and 95% confidence bands for baseline model.
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B.12. Distinguishing between Patent Quality

In the baseline estimation we include all patent families, irrespective of their quality. To
control for patent quality, we closely follow Hémous et al. (2025) to focus on biadic patents
(filed in at least two of the three major patent offices) with at least on citation. Figure B.12
shows that the estimated responses for the U.S. sample are very similar.

Figure B.12: Robustness with respect to patent quality
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impact. Lines: point estimates. Shaded areas: 68 and 95% confidence bands for baseline model.
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B.13. Responses using USPTO Data

We rely on PATSTAT data for our main analysis, but verify that the estimates are compa-
rable when using USPTO data. Patent counts can differ across the two sources, because of
different procedures for how patent applications are recorded and the treatment of PCT
patent applications. We keep focusing on patent families, but include all families filed
with the USPTO (even when the first filing in the family was with a foreign office). Figure
B.13 illustrates that the estimated responses in the U.S. are comparable for PATSTAT and
USPTO data.

Figure B.13: Patent responses based on USPTO data
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as an instrument. The shock is normalized to increase the federal funds rate by 25 basis points on
impact. Lines: point estimates. Shaded areas: 68 and 95% confidence bands for baseline model.
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B.14. Robustness to Firm-level Patent Counts

In our main analysis, a patent can be matched to multiple U.S. companies as the result of
co-inventions. Figure B.14 shows that our results are not sensitive to this approach, as the
estimated impulse responses are comparable when (i) weighting co-invented patents, or
(ii) excluding co-invented patents.

Figure B.14: Robustness to co-invented patents
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Notes: Green patenting responses to a monetary policy shock under different approaches to deal
with co-inventions. Responses are estimated based on the panel local projections model (3) using
high-frequency monetary surprises as an instrument. The orange dotted line weighs co-invented
patents while the yellow dashed line excludes co-invented patents. The shock is normalized to
increase the federal funds rate by 25 basis points on impact. Lines: point estimates. Shaded areas:
68 and 95% confidence bands for baseline model.
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C. Model Appendix

This appendix includes derivations, proofs as well as details on the extensions of our
dynamic stochastic general equilibrium model with green and non-green innovation.

C.1. General Equilibrium with Monetary Shocks

In this section, we show how we introduce nominal rigidities and monetary policy shocks
into our model.

Consider that instead of demanding final goods, households purchase a basket of dif-
ferentiated retail goods indexed by k:

Ỹt =

(∫ 1

0
ỹ

σ−1
σ

kt dk
) σ

σ−1

, (2)

where σ > 1 is the elasticity of substitution between varieties.
Given the aggregate demand Ỹt, the demand function for each variety k follows ỹkt =(

p̃kt
P̃t

)−σ
Ỹt, where p̃kt is the price of variety k and P̃t is the corresponding price index

P̃t =
(∫ 1

0 p̃1−σ
kt dk

) 1
1−σ . The household’s budget constraint now takes the form:

P̃tCt + QtBt+1 = Bt + WtLt + Ws
t Ls

t + Dt. (3)

Retailer. A fixed mass of retailers k ∈ [0, 1] produces differentiated retail goods from the
final good producer. The production technology is one-to-one, ỹkt = ykt, where ykt is the
amount of final good that the retailer k purchased. Retailers set prices with Rotemberg
price adjustment costs:

φ

2

(
p̃t

p̃t−1
− 1
)2

Ỹt. (4)

Each retailer maximizes its expected discounted profit:

Et

∞

∑
s=0

Λt,t+s

[
( p̃k,t+s − Pt+s) ỹk,t+s −

φ

2

(
p̃k,t+s

p̃k,t+s−1
− 1
)2

Ỹt+s

]
, (5)
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subject to its demand. The optimal price-setting condition:

(1− σ) + σ
Pt

P̃t
− φΠtP̃−1

t + EtΛt,t+1φΠt+1(1 + Πt+1)P̃−1
t+1 = 0 (6)

Monetary policy. The central bank follows a Taylor Rule:

Rt = β−1
(

At+1

At

)ϕA

Πϕπ

t ϱt. (7)

where ϱt is a monetary shock:

log ϱt = ρϱ log ϱt + σϱeϱ
t (8)

C.2. Balanced Growth Path

In this appendix, we define the notion of balance growth in our model and provide con-
ditions for its existence.

Definition C.1 (Balanced Growth Path). A balanced growth path (BGP) is a sequence of
allocations and prices

• household allocations: {Ct, Lt, Ls
t , Bt+1}∞

t=0,

• firm allocations: {Yt, Lt, Mt, Et, mht, gjt, ft}∞
t=0,

• innovator allocations: {LS
it,M, LS

it,G}∞
t=0,

• price system: {Pt, P̃t, PM
t , PG

t , P f
t , PE

t , Wt, Ws
t , Rt}∞

t=0,

• aggregate state variables: {AM
t , AG

t }∞
t=0,

such that:

1. The equilibrium conditions of the model are satisfied at each t;

2. As t→ ∞, the aggregate variables Yt, Ct, Mt, Et grow at a constant rate;

3. As t→ ∞, the input shares

1
Yt

∫ AM
t

0
mht dh and

1
Yt

∫ AG
t

0
gjt dj

converge to constants.
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To understand the properties of BGP, consider the limit where the green transition is
completed, and the production technology simplifies to:

Yt = LαL
t MαM

t G1−αL−αM
t . (9)

The first-order conditions are given by:

αL
PtYt

Lt
= Wt, (10)

αM
PtYt

Mt
= PM

t , (11)

(1− αL − αM)
PtYt

Gt
= PG

t . (12)

Given the price equations:

PM
t =

(
AM

t

)1−µM
µMPt, (13)

PG
t =

(
AG

t

)1−µG
µGPt, (14)

substituting into equations (11) and (12), we obtain:

Mt =
αM

µM

(
AM

t

)µM−1
Yt, (15)

Gt =
1− αL − αM

µG

(
AG

t

)µG−1
Yt. (16)

Substituting (15) and (16) into (9):

Yt = LαL
t

(
αM

µM

(
AM

t

)µM−1
Yt

)αM
(

1− αL − αM

µG

(
AG

t

)µG−1
Yt

)1−αL−αM

. (17)

Rearranging, we obtain:

Yt = Z̄Lt

(
AM

t

) αM(µM−1)
αL

(
AG

t

) (1−αL−αM)(µG−1)
αL , (18)

where Z̄ =
(

αM
µM

) αM
αL
(

1−αL−αM
µG

) 1−αL−αM
αL .

On the balanced growth path, the ratios
∫ AM

t
0 mht dh

Yt
and

∫ AG
t

0 gjt dj
Yt

must remain constant
over time. Moreover, AG

t , AG
t have to be growing such that ft → 0 in the long run.
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Assumption C.1. To ensure the existence of a Balanced Growth Path, the following conditions
hold:

1. In the long run, AM
t and AG

t have to be growing over time.

2. In the long run, the technology levels satisfy AM
t = ιAG

t .

3. The exponents satisfy the constraint:

αM

αL
(µM − 1) +

1− αL − αM

αL
(µG − 1) = 1. (19)

C.3. Equilibrium Conditions and Model Solution

We present here the equilibrium conditions under nominal rigidity and monetary policy
shocks, in line with the empirical analysis which focuses on the impulse responses to
monetary policy shocks. The equilibrium conditions for the RBC version of the model are
analogous, but exclude the Taylor rule and the New Keynesian Phillips Curve.

C.3.1. Equilibrium Conditions

Households. The consumption Euler equation:

1 = βEt

(
ϱD

t+1Ct

ϱD
t Ct+1

Π−1
t+1Rt

)
. (20)

Unskilled Labor Supply:

ϱD
t Wt = ω̄CtP̃t(Ls

t)
η. (21)

Skilled Labor Supply:

ϱD
t Ws

t = ω̄sCtP̃t(Ls
t)

ψ. (22)
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Final good producer. The optimization of the final good producer yields the following
FOCs:

αL
PtYt

Lt
= Wt (23)

αM
PtYt

Mt
= PM

t (24)

(1− αL − αM)
PtYt

Et
E

1
ρ

t f
− 1

ρ

t = P f
t (25)

(1− αL − αM)
PtYt

Et
E

1
ρ

t G
− 1

ρ

t = PG
t (26)

The final good producer’s demand of intermediate good and clean energy input:

mht =

(
pm

ht
PM

t

) µM
1−µM

Mt, (27)

gjt =

(
pg

jt

PG
t

) µG
1−µG

Gt. (28)

Because the market of final good is perfectly competitive:

Pt =

(
Wt

αL

)αL
(

PM
t

αM

)αM ( PE
t

1− αL − αm

)1−αL−αm

Z−αL
t . (29)

where by Shephard’s Lemma,

PE
t =

(
(P f

t )
1−ρ + (PG

t )1−ρ
) 1

1−ρ . (30)

Intermediate good producer.

pm
ht = µMPt, (31)

pg
jt = µGPt. (32)

Fossil fuel. The price-setting condition of fossil fuel producer:

P f
t = ξ−1

f Pt. (33)
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Innovation.

AM
t ζM

(
LS

it,M

)ν−1
Vm

t = Ws
t . (34)

AG
t ζG

(
LS

it,G

)ν−1
V g

t = Ws
t . (35)

Retailer.

(1− σ) + σ
Pt

P̃t
− φΠtP̃−1

t + EtΛt,t+1φΠt+1(1 + Πt+1)P̃−1
t+1 = 0 (36)

Monetary policy. The central bank follows a Taylor Rule:

Rt = β−1
(

At+1

At

)ϕA

Πϕπ

t ϱt. (37)

TFP growth rate. Given equilibrium condition (24) and the auxiliary optimality condi-
tion for optimization Et:

(1− αL − αM)
PtYt

Et
= PE

t , (38)

we can substituting them into the production technology of the final good:

Yt =

(
αM

µM

) αM
αL

(1− αL − αM)
1−αL−αM

αL Lt(AM
t )

αM
αL

(µM−1)
(Pt/PE

t )
1−αL−αM

αL (39)

By the definition of TFP,

At = (AM
t )

αM
αL

(µM−1)
(Pt/PE

t )
1−αL−αM

αL (40)

C.3.2. Definition of Equilibrium

Given an initial value of (AM
0 , AG

0 ) and a sequence of exogenous shocks {Zt, ϱt}∞
t=0, a

Recursive Competitive Equilibrium consists of sequences:
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Household allocations: {Ct, Lt, Ls
t , Bt+1}∞

t=0,

Firm decisions: {Yt, Lt, Mt, Et, mht, gjt, ft}∞
t=0,

Innovation choices: {LS
it,M, LS

it,G}∞
t=0,

Price system: {Pt, P̃t, PM
t , PG

t , P f
t , PE

t , Wt, Ws
t , Rt}∞

t=0,

Aggregate state variables: {AM
t , AG

t }∞
t=0,

such that:

1. Households optimize given prices, subject to their budget constraint and first-order
conditions for consumption and labor supply;

2. Final good producers maximize profits subject to the production technology and
demand for inputs, satisfying the optimality conditions for labor, materials, fossil
fuels, and green energy;

3. Intermediate good producers and green energy producers set prices as monopolistic
competitors, satisfying the demand functions;

4. Fossil fuel producers set prices competitively, satisfying their cost conditions;

5. Retailers set prices subject to nominal rigidities, satisfying their optimal price-setting
condition;

6. Innovators choose R&D effort to maximize expected returns, satisfying their first-
order conditions;

7. Monetary policy follows the Taylor rule specified above;

8. The laws of motion for the variety stocks AM
t and AG

t are consistent with innovation
outcomes and obsolescence;

9. All markets clear: goods, labor (skilled and unskilled), bond, and intermediate in-
puts.

C.3.3. Solution Method

In solving the model, we adopt the MIT shock approach to study the causal effect of a
specific shock on the economy’s dynamic transition path. Unlike standard perturbation
methods commonly employed in DSGE models, which rely on a fixed steady state around
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which the system is locally approximated, our framework features an endogenous accu-
mulation of material and green energy varieties, AM

t and AG
t , whose dynamics are per-

manently influenced by shocks. The absence of a fixed steady state makes conventional
local linearization techniques not directly applicable. Instead, the MIT shock approach
provides a tractable way to characterize the economy’s nonlinear adjustment following a
shock, conditional on the endogenous evolution of the state variables.

Specifically, the numerical solution proceeds as follows:

1. Initialize iteration index i = 0. Given a steady state implied by the balanced growth
path (BGP), set an initial guess ({AM

t , AG
t }T

t=0)
(i).

2. Repeat until convergence:

(a) Using the path ({AM
t , AG

t }T
t=0)

(i), along with a specified shock sequence (1, ρ, ρ2, . . . )εt,
solve forward for the evolution of all endogenous variables.

(b) Update the sequence of the number of green and non-green varieties, denoted
by AM

t and AG
t , respectively.

(c) Compute the maximum deviation across time between the updated and previ-
ous sequences of varieties:

ξ = max
t

(∣∣∣AM
t − AM,(i)

t

∣∣∣+ ∣∣∣AG
t − AG,(i)

t

∣∣∣) .

(d) If ξ < 10−5, the algorithm has converged and the procedure terminates.

(e) Else, update the path by setting ({AM
t , AG

t }T
t=0)

(i+1) = (AM
t ,AG

t ), increment
i← i + 1, and continue to the next iteration.

C.4. Proposition 3.2 in General Equilibrium

Proposition 3.2 established that, during a green transition, the value of a green variety is
unambiguously less cyclical than the value of a non-green variety, holding the discount
factor constant.

What is the effect of the stochastic discount factor? The following lemma formalizes
how the impact of the discount rate channel depends on the cyclicality of the SDF:

Lemma C.1 (Discount Rate Channel). Denote the discount rate component in equation (21):

Ξk =
∞

∑
s=0

ϕs Λt,t+s,ssΠk
t+s,ss

Vk
t,ss

d log Λt,t+s

d log Yt
(41)
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for k = {M, G}. During the green transition, a procyclical SDF
(

∂ log Λt+s,t+s+1
∂ log Yt

> 0 for s ∈N
)

implies that ΞG > ΞM, whereas a countercyclical SDF implies that ΞG < ΞM.

This result highlights that when the SDF is countercyclical, the discount rate channel
reinforces the cash flow channel. In contrast, a procyclical SDF causes the discount rate
channel to act in the opposite direction, thereby dampening the effect of the cash flow
channel.

Despite the ambiguity of the discount rate channel, the result of Proposition 3.2 also
holds in the general equilibrium model with a stochastic discount factor that is endoge-
nously determined. Corollary C.1 shows that the cash flow channel unambiguously dom-
inates the discount rate channel under the log utility assumption.

Corollary C.1 (Cyclicality during the Green Transition in GE). During the green tran-
sition in the general equilibrium with an endogenous SDF, conditional on both preference and

TFP shocks, the relative value of innovation, defined as V
G
t
VM

t
, exhibits countercyclicality. Formally,

d logVG
t

d log Yt
<

d logVM
t

d log Yt
, or equivalently

d log(VG
t /VM

t )
d log Yt

< 0.

Proof. See Appendix D. ■

C.5. Impulse Responses

In the main text, we report the impulse response of green and non-green innovation to
a 25 basis point monetary policy shock. To provide a comprehensive overview of the
model’s quantitative results, Figure C.1 presents the impulse responses of a range of other
aggregate variables. The contractionary monetary policy shock leads to a decline in ag-
gregate demand, resulting in a short-term reduction in output and deflationary pressures.
Simultaneously, it lowers the profitability of innovation, which reduces the availability of
skilled labor for R&D, leading to a lower long-term total factor productivity.
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Figure C.1: Model impulse responses
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Notes: Figure C.1 illustrates the impulse response of aggregate variables to a 25-basis-point mon-
etary policy shock.

C.6. The Role of Intertemporal Elasticity of Substitution

In Section 3, we demonstrate that under log utility, the cash flow channel dominates the
discount rate channel in general equilibrium. In this section, we extend the analysis to
a more general CRRA utility specification and examine how different values of the in-
tertemporal elasticity of substitution (IES) influence the cyclicality of green innovation.
Specifically, we modify the household’s objective to:

Et

∞

∑
t=0

βt

(
ϱD

t
C1−σc

t
1− σc

− ω̄

1 + η
L1+η

t − ω̄s

1 + ψ
(Ls

t)
1+ψ

)
, (42)

subject to the period-by-period budget constraint:

PtCt + QtBt+1 = Bt + WtLt + Ws
t Ls

t + Dt, (43)

82



where σ denotes the coefficient of relative risk aversion. All other elements of the model,
including equilibrium conditions and calibration targets, remain as specified in Section 3.

Figure C.2: The role of intertemporal elasticity of substitution
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(b) Green share of new patents
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Notes: Impulse responses of the relative patent value and the green share of new patents to a 25
basis point monetary policy shock. We compare the baseline model (σc = 1) to the case where
σc = 2, keeping other parameterizations the same.

Figure C.2 compares the results under σc = 2 to the baseline specification with log
utility (i.e., σc = 1). Intuitively, a higher value of σ implies a lower intertemporal elasticity
of substitution, which strengthens the discount rate channel and thereby dampens the
countercyclicality of green innovation. Figure C.2 confirms this prediction.

Panel a shows that when σc = 2, the countercyclicality of new green patenting declines
considerably, while the cyclicality of new non-green patents remains largely unchanged.
As a result, the countercyclicality of the green share of new patents declines by about 40%
under the same parameterization, see Panel b.

C.7. Alternative Shocks from the Demand Side: Preference Shocks

In Section 3, we model monetary shocks as demand-side disturbances to allow for better
comparability with the empirical analysis. In this appendix, we look into the implications
of the preference shock, altering the marginal utility of consumption.

Unlike monetary shocks, preference shocks influence not only the level of marginal
utility but also intertemporal substitution by shifting the relative valuation of consump-
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tion today versus in the future. Specifically, the stochastic discount factor becomes:

Λt,t+1 = β
ϱD

t+1Ct

ϱD
t Ct+1

, (44)

where changes in ϱD
t affect the slope of intertemporal marginal utility.

As a result, the SDF becomes less procyclical—or even countercyclical—compared to
the case of TFP or monetary shocks. This distinction implies that the discount rate chan-
nel may contribute to countercyclical movements in the relative valuation of intellectual
property (IP) associated with green versus non-green technologies.

Figure C.3 compares the responses of green innovation to a preference shock and to a
comparable monetary shock.4

Figure C.3: Preference shocks
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(b) Green share of new patents
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Notes: Impulse responses of the relative patent value and the green share of new patents to a
preference shock and a monetary shock that reduces the output by 1% at t = 0.

Panel a shows that the countercyclicality of green patenting is modestly stronger un-
der a preference shock, consistent with the intuition that a countercyclical stochastic dis-
count factor—induced by such shocks—gives rise to a discount rate channel that rein-
forces, rather than offsets, the countercyclicality raised by the cash flow channel.

Panel b presents the response of the green share of new patents, which also increases
slightly more under a preference shock. While these results suggest that the discount rate
channel moves in the same direction as the cash flow channel in this case, the magni-

4Comparable in the sense that both shocks generate an impact decline in aggregate output of approxi-
mately one percent.

84



tude of the difference remains limited, reaffirming that the cash flow channel remains the
dominant force behind the countercyclical pattern of green innovation.

C.8. Green Is in the Future Along the Transition Path

In Section 4, we present the impulse response of the green share of patents at t = 0, which
is calibrated to the green share of energy in the 2010s. The results show that, due to the
’green is in the future’ effect, the green share of new patents is countercyclical. How does
the green is in the future effect evolve, and how does it affect the countercyclicality of the
green share of new patents along the transition path?

Figure C.4a first depicts the green share of energy cost along the transition path. The
green energy input gradually takes over the energy market. Panel b plots the cash flow
from producing green varieties. Its trend tracks the trajectory of the green transition,
initially growing slowly, then accelerating as the transition progresses, and eventually
flattening out as green energy dominates the entire energy market. Panel c shows the
cumulative impulse response of the green share of new patents to a 25 basis point mon-
etary policy shock along the transition path. The countercyclicality of the green share
of new patents exhibits a pattern of first increasing and then decreasing. The initial in-
crease is due to the slower pace at which green energy is capturing the market in the
early stages, which results in a weaker green is in the future effect in the short term. As
the pace of green energy adoption accelerates, the green is in the future effect strengthens.
Ultimately, as green profits stabilize and the transition matures, the green is in the future
effect gradually vanishes in the long term.
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Figure C.4: The role of the base period along the transition path
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(b) Profit of green production
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(c) Green share of new patents
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Notes: Sensitivity of the results depending on the initial period t along the transition path when
the monetary policy shock hits. Panel a shows the green share of energy cost along the transition
path, Panel b depicts the profit of green production ΠG

t = (µG − 1)ḡt and Panel c shows the
instantaneous response of the green share of new patents.

C.9. Varying Speed of Green Transition

In Section 4.1, we calibrate the model to U.S. data, and the model suggests that it takes
60 years for the economy to reach a point where green energy occupies half of the en-
ergy market. What if the green transition is accelerated? How does an accelerated green
transition influence the cyclicality of green innovation? Figure C.5a shows the green tran-
sition path based on our baseline calibration, as well as an accelerated path where we
increase the scale parameters of innovation ζG and ζM by 20%. Figure C.5b illustrates the
impulse response of the green share of new patents to a 25-basis-point monetary policy
shock under both transition scenarios. This figure shows that if the green transition is
accelerated, the green share of new patents exhibits stronger countercyclicality. This is
because a faster transition means that, within a relatively short period, the proportion of
current cash flow to value is smaller, thereby strengthening the green is in the future ef-
fect. Figure C.5c plots the cumulative response of the green share of new patents against
the years required for the green share of energy cost to reach 50%. We find that the faster
the green transition, the stronger the countercyclicality.
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Figure C.5: Varying speed of green transition
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(b) IRF of green share t = 0
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(c) Green share of new patents
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Notes: Sensitivity with respect to the speed of the green transition path. We consider an accel-
erated path where we increase the scale parameters of innovation ζG and ζM by 20%. Panel b
illustrates the impulse response of the green share of new patents to a 25 basis point monetary
policy shock at t = 0 under both transition scenarios. Panel c plots the cumulative response of the
green share of new patents against the years required for the green share of energy cost to reach
50%.

C.10. Model with Brown Innovation

In Section 3, we abstract from innovation in fossil fuel (brown) inputs. This simplification
allows us to focus on the endogenous dynamics of green innovation. However, empirical
evidence suggests that a considerable fraction of energy-related innovation continues to
target improvements in the efficiency and productivity of traditional fossil fuels. For in-
stance, Aghion et al. (2016) documents that firms facing weak environmental regulation
tend to innovate more in brown technologies rather than shifting towards green alterna-
tives. To capture this pattern, we extend the model by allowing for endogenous innova-
tion in brown energy. In this section, we relax the assumption of a fixed measure of brown
inputs and introduce entry dynamics for fossil-based energy varieties.

Endogenous brown innovation. We modify the baseline specification by allowing the
measure of brown energy varieties to evolve endogenously. The final energy input is
produced by aggregating green and brown components through a CES aggregator:

Et =

(
G

ρ−1
ρ

t + F
ρ−1

ρ

t

) ρ
ρ−1

, (45)
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where the brown energy component Ft is given by

Ft =

(∫ AF
t

0
f

1
µF

st ds

)µF

. (46)

From the optimization problem of final good producer, demand for each brown energy
variety s ∈ [0, AF

t ] is given by

fst =

(
p f

ht
PF

t

) µF
1−µF

Ft (47)

where PF
t denotes the associated price index:

PF
t =

(∫ AF
t

0

(
p f

st

) 1
1−µF ds

)1−µF

. (48)

The evolution of the fossil reserve is modified to account for the endogenous measure
of brown varieties:

Rt+1 = Rt −
∫ AF

t

0
fst ds. (49)

Each brown energy variety is produced by a monopolistically competitive firm that
sets its price subject to demand from final good producers. The firm chooses p f

st to maxi-
mize profits:

ΠF
st = max

p f
st

{
p f

st fst − ξ−1
f fst

}
. (50)

The value of a brown energy variety is given by

VF
t =

∞

∑
s=0

ϕs Et

[
Λt,t+sΠF

t+s

]
. (51)

Innovator’s problem on brown energy varieties:

max
LS

it,M

φF
t LS

it,M

(
VF

t − cVF
t,ss

)
−Ws

t LS
it,F (52)
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where φF
t is the innovation productivity of brown innovation:

φF
t = ζF AF

t

(
LS

t,F

)−(1−ν)
(53)

Green is in the future. The model with brown innovation preserves the green is in the
future property, provided that there is green transition underway:

Proposition C.1 (Green Is in the Future). If the green share of energy Gt/Et rises over time,

then the relative profitability of green varieties increases over time, i.e., ΠG
t

ΠM
t

is increasing in t.

Proof. See Appendix D. ■

Proposition C.2 (Cyclicality during the Green Transition). If the green share of energy

Gt/Et rises over time, SG
t

SG
t +SM

t
, is countercyclical.

Proof. See Appendix D. ■

Proposition C.3 (General Equilibrium Effects). During the green transition, there exists a
threshold ϵ > 0 such that green innovation is countercyclical, i.e.,

∂ log SG
t

∂ log Yt
< 0,

if and only if the wage elasticity of skilled labor with respect to output, ∂ log Ws
t

∂ log Yt
, exceeds ϵ.

Proof. See Appendix D. ■

C.11. Alternative Formulation of Extraction Cost

In the baseline model, we assume a linear extraction technology for fossil fuel. This as-
sumption facilitates tractability but omits certain empirically relevant features of fossil
fuel supply, particularly the presence of increasing marginal extraction costs. In practice,
scaling up oil production often entails rising costs due to capacity constraints in drilling
equipment, labor availability, and geological limitations such as declining well pressure.

To capture this more realistic aspect of oil production, we follow Bornstein, Krusell,
and Rebelo (2023) and introduce a convex cost structure, where the extraction cost de-
pends nonlinearly on the extraction rate. Specifically, we assume that extraction uses
final goods to extract oil reserves, and the cost is given by:

cF(θt) = ψF(θt)
ηF

Rt, (54)
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where θt ≡ ft
Rt

denotes the extraction rate.
The representative firm chooses the extraction rate to maximize profits:

max
θt

PF
t θtRt − ψF(θt)

ηF
Rt, (55)

yielding the first-order condition:

PF
t = ψFηF(θt)

ηF−1. (56)

This convex cost structure introduces an important general equilibrium feedback: as
aggregate activity rises and oil demand increases, the marginal cost of extraction rises
more than proportionally, leading to procyclical movements in the oil price. This channel
tends to amplify the procyclicality of green innovation, which relies on fossil fuel prices as
part of its relative cost advantage. In that sense, it can attenuate some of the mechanisms
emphasized in our baseline model.

We follow Bornstein, Krusell, and Rebelo (2023) and set ηF = 2, consistent with micro-
level evidence on the cost structure of fracking operations. The scale parameter ψF is
normalized to 1.
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Figure C.6: Alternative fossil extraction technology
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(c) IRF of profitability
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(f) New patents
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Notes: Model responses under the alternative fossil extraction technology. The convex cost pa-
rameter is set to ηF = 2, while the scale parameter is normalized to ψF = 1. All other parameters
follow the baseline calibration in Section 4.1.

Figure C.6a highlights that under the convex oil production technology, the green tran-
sition accelerates significantly, with the green energy share surpassing fossil fuels within
25 years—compared to about 60 years in the baseline. As shown in Panel b, this faster
transition is accompanied by a more rapid rise in the profitability of green innovation.
Panel c illustrates that, due to the procyclical behavior of oil prices induced by the convex
cost structure, the use of green inputs becomes more procyclical as well. Nevertheless,
Panel d shows that the value of green patents remains less procyclical than that of non-
green patents, although the gap in cyclicality narrows. Panel f confirms that the counter-
cyclicality of new green patenting still holds, and Panel e shows that the green share of
innovation remains countercyclical.
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C.12. Model with Creative Destruction

In the Appendix, we consider a different model of innovation. Specifically, we endogenize
the obsolescence rate to allow for vertical innovation.

Production. There is a representative firm that produces final good by employing un-
skilled labor Lt, a material composite Mt, and an energy composite Et:

Yt = (ZtLt)
αL MαM

t E1−αL−αM
t , (57)

where Zt is an aggregate labor productivity, evolving as

log Zt = ρz log Zt−1 + σzεz
t . (58)

The final good producer combines fossil fuel ft and a green energy composite Gt into
the energy composite Et via a CES technology:

Et =

(
f

ρ−1
ρ

t + G
ρ−1

ρ

t

) ρ
ρ−1

. (59)

The parameter ρ governs the elasticity of substitution between fossil fuel and the green
energy composite. We assume ρ > 1, indicating that ft and Gt are substitutes.

The green energy composite Gt and the materials composite Mt each aggregate a con-
tinuum of differentiated product lines indexed by j ∈ [0, 1] for green energy and h ∈ [0, 1]
for materials. The aggregation of materials Mt is given by:

Mt =

(∫ 1

0
Am

htm
1

µM
ht dh

)µM

, (60)

and the aggregation of green energy Gt is given by:

Gt =

(∫ 1

0
Ag

jtg
1

µG
jt dj

)µG

. (61)

Here, Am
ht and Ag

jt represent the qualities of materials and green energy inputs, respec-
tively, while mht and gjt denote the quantities of each product line.
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The final good producer’s optimization problem is:

max
Lt,{mht}, ft,{gjt}

Pt

[
(ZtLt)

αMβ
t E1−α−β

t

]
−
∫ 1

0
pm

ht mht dh −
∫ 1

0
pg

jt gjt dj − P f
t ft. (62)

Solving this problem yields the following demand equations:

mht =

(
pm

ht/Am
ht

PM
t

) µM
1−µM

Mt, gjt =

(
pg

jt/Ag
jt

PG
t

) µG
1−µG

Gt, (63)

where PM
t =

(∫ 1
0 (pm

ht/(Am
ht)

µM)
1

1−µM dh
)1−µM

and PG
t =

(∫ 1
0 (pg

jt/(Ag
jt)

µG)
1

1−µG dj
)1−µG

are the corresponding price indices of Mt and Gt.

Intermediate input producers. Intermediate input producers, which include firms that
produce both non-green and green energy varieties, mht and gjt, respectively, maximize
profits subject to the demand equations in (63).

Green energy product lines. The green energy product lines are produced by a continuum
of firms operating under monopolistic competition.

Each variety j of green energy uses a linear production technology, where the marginal
cost of producing one unit is given by ψAg

jt, with ψ representing the constant marginal
cost per unit of production, and Ag

jt denoting the quantity produced by firm j of the green
energy variety. This proportional cost structure reflects the fact that higher-quality prod-
ucts typically require more expensive inputs.

The marginal cost for each variety j can thus be written as:

ξ
g
jt = ψAg

jt, (64)

The firm’s objective is to maximize its profits by choosing the optimal quantity Ajt

and the corresponding price pg
jt, given the demand for its product and its marginal cost

structure.
The profit maximization problem for a firm producing green energy product line j is

given by:

ΠG
jt = max

pg
jt

(
pg

jt gjt − ξ
g
jtgjt

)
, (65)

Non-green material product lines. Non-green material product lines are produced in a simi-
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lar fashion to green energy varieties.
Each variety mht is produced using linear technology, with marginal costs given by

ψAm
ht, where Am

ht is the quantity produced by firm h of the non-green material variety.
Like green energy products, the cost structure increases with the scale of production, as
higher-quality materials demand more expensive inputs.

The marginal cost for each variety h can be written as:

ξm
ht = ψAm

ht, (66)

The firm’s objective is to maximize profits by determining the optimal quantity Aht

and price pm
ht, taking into account demand and the marginal cost structure.

The profit maximization problem for a firm producing non-green material product
line h is given by:

Πm
ht = max

pm
ht

(pm
ht mht − ξm

htmht) . (67)

Innovation. In this framework, the engine of economic growth is driven by process
innovations that lead to quality improvements. The quality of a product line increases
over time as firms introduce innovations. Specifically, the quality of each machine line
evolves according to the following “quality ladder” specification:

Aht = λnht Ag
h0, (68)

Ajt = λnjt Am
j0, (69)

where λ > 1 is a constant that represents the factor by which the quality increases with
each innovation, Ag

h0, Am
j0 ∈ R+ is the initial quality of the product line h, j of either green

and non-green at time t = 0, and njt, nht denotes the number of innovations on this prod-
uct line between time 0 and t.

Quality improvements are created by R&D. Innovation firms hire skilled labor to con-
duct R&D. If an innovation firm hires LS units of skilled labor for research on this product
line, then it generates a flow rate:

ζM At

Am
ht

(LS
M,t)

ν,
ζG At

Ag
jt

(LS
G,t)

ν. (70)

The innovation firm who successfully innovate becomes the leading-edge producer
and replaces the previous vintage of the same product. Therefore, the value of a successful
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innovation can be written as:

Vm
ht (λAm

ht−1) = Πm
ht(λAm

ht−1) + (1− ϕm
ht)EtΛt,t+1Vm

ht+1(λAm
ht−1) (71)

Vg
jt(λAg

jt−1) = Πg
jt(λAg

jt−1) + (1− ϕ
g
jt)EtΛt,t+1Vg

jt+1(λAg
jt−1) (72)

where ϕm
ht, ϕ

g
jt are the rate of new innovations.

The innovation problem implies:

ζM AtVm
ht /Am

htν(LS
t,M)ν−1 = WS

t (73)

ζG AtV
g
ht/Ag

htν(LS
t,G)

ν−1 = WS
t (74)

where the wage of skilled labor is assumed constant in this partial equilibrium setup. The
following two propositions establish that the key mechanism—green profits being more
backloaded—holds in the quality-ladder model with creative destruction. We formally
prove that this mechanism also implies a countercyclical green share of innovation in a
specific case with linear innovation technology and in partial equilibrium.

Proposition C.4 (Green Is in the Future). During the green transition, the relative profits of

green varieties compared to non-green varieties, measured by ΠG
t

ΠM
t

, increase over time.

Proposition C.5 (Cyclicality during the Green Transition). For a linear innovation tech-
nology where ν = 1, during the green transition, the green share of new varieties, ϕG

t
ϕG

t +ϕM
t

, is

countercyclical, where ϕM
t =

∫ 1
0 ϕM

ht dh and ϕG
t =

∫ 1
0 ϕG

jt dj.

To examine whether the countercyclical green (share of) innovation result holds more
generally in the quality-ladder model with creative destruction under general equilib-
rium, we embed the model into the same general equilibrium framework as in Section 4.1
and recalibrate it accordingly. Specifically, we keep the parameters governing the pro-
duction economy and household preferences unchanged, and calibrate the innovation
parameters ζM, ζL, and λ to match a long-run creative destruction rate of 8% and an
output growth rate of 3%.
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Figure C.7: Green and non-green patenting responses in creative destruction model
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Notes: Impulse responses of the value and number of varieties of green and non-green patents to a
25 basis point monetary policy shock. The calibration of the households and production economy
follows Section 4.1, and the innovation parameters ζM, ζL, and λ to match a long-run creative
destruction rate of 8% and an output growth rate of 3%.

To examine whether the countercyclicality of green (share of) innovation extends more
generally to a quality-ladder model with creative destruction in general equilibrium, we
embed the mechanism into the same general equilibrium framework as in Section 4.1 and
recalibrate the model accordingly. Specifically, we keep the production-side and house-
hold parameters unchanged, and calibrate the innovation parameters ζM, ζL, and λ to
target a long-run creative destruction rate of 8% and an output growth rate of 3%.

Figure C.7a shows that, as expected, the patent value of green varieties is less pro-
cyclical than that of non-green ones. Panel c confirms that the green share of innovation
is countercyclical, although the magnitude is somewhat smaller than in Figure 7. Panel b
further shows that green innovation is countercyclical, while non-green innovation re-
mains procyclical.

D. Proofs

This appendix contains the corresponding proofs from our analysis.

Proof of Lemma 3.1. The first-order conditions of the final good producer imply:

(1− αL − αM)
PtYt

Et
E

1
ρ

t f
− 1

ρ

t = P f
t , (75)

(1− αL − αM)
PtYt

Et
E

1
ρ

t G
− 1

ρ

t = PG
t . (76)
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It follows that:

ft

Gt
=

(
PG

t

P f
t

)ρ

. (77)

Under monopolistic competition in the green sector, the optimal pricing implies pg
jt =

µG, which in turn yields PG
t = µG(AG

t )
1−µG .

By the definition of the energy mix:

Gt

Et
=

1 +
(

ft

Gt

) ρ−1
ρ

−
ρ

ρ−1

=

(
1 +

(
µGP f

t (AG
t )

µG−1
)− ρ−1

ρ

)− ρ
ρ−1

. (78)

Therefore, Gt
Et

increases overtime if and only if P f
t

(AG
t )

1−µG
increases overtime. ■

Proof of Proposition 3.1. From equation (26):

PG
t Gt

PtYt
= (1− αL − αm)E

1
ρ−1
t G

1− 1
ρ

t

= (1− αL − αm)

( ft

Gt

) ρ−1
ρ

+ 1

−1

. (79)

Combining equations (25) and (26), we obtain:

ft

Gt
=

(
PG

t

P f
t

)ρ

. (80)

From the clean energy producer’s optimization and the fossil fuel price-setting equa-
tion:

ft

Gt
=

(
θ

1− θ

(
AG

t
)1−µG µGPt

ξ−1
f Pt

)ρ

=

(
θ

1− θ

(
AG

t
)1−µG µG

ξ−1
f

)ρ

, (81)

which is declining over time. Therefore, when ρ > 1, it follows that PG
t Gt
PtYt

is increasing
over time.

Since the production of varieties of intermediate inputs and clean energy inputs is
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homogeneous:

Mt =
(

AM
t

)µM
m̄t, (82)

Gt =
(

AG
t

)µG
ḡt, (83)

equations (24) and (79) imply:

PG
t Gt

PM
t Mt

=
AG

t µG ḡt

AM
t µMm̄t

=
αM

(1− αL − αm)

( ft

Gt

) ρ−1
ρ

+ 1

−1

. (84)

It follows that:

ḡt

m̄t
=

AM
t

AG
t

µMαM

µG(1− αL − αM)

( ft

Gt

) ρ−1
ρ

+ 1

−1

. (85)

And because AM
t

AG
t

is constant in the long run, it implies ḡt
m̄t

is increasing over time. Finally,
by equation (31) and (31),

ΠG
t

ΠM
t

=
(µG − 1)ḡt

(µM − 1)m̄t
. (86)

Because ḡt
m̄t

is increasing over time, the proposition follows. ■

Proof of Proposition 3.2. Define the value of intellectual property holding SDF fixed:

ΘM
t =

τ

∑
s=0

(βϕ)s EtΠm
t+s =

τ

∑
s=0

(βϕ)s Et(µM − 1)Pt+sm̄t+s, (87)

ΘG
jt =

τ

∑
s=0

(βϕ)s EtΠ
g
t+s =

τ

∑
s=0

(βϕ)s Et(µG − 1)Pt+s ḡt+s. (88)

Now, consider a one-shot shock to Zt, and the same proof can be applied to persistent
shocks and other shocks that affect Yt. We obtain the following result:

∂ log ΘM
t

∂ log Yt
=

(µM − 1)Pt,ssm̄t,ss

VM
t,ss

(
∂ log m̄t

∂ log Zt
+

∂ log Pt

∂ log Zt

)
∂ log Zt

∂ log Yt
, (89)

∂ log ΘG
t

∂ log Yt
=

(µG − 1)Pt,ss ḡt,ss

VG
t,ss

(
∂ log ḡt

∂ log Zt
+

∂ log Pt

∂ log Zt

)
∂ log Zt

∂ log Yt
, (90)
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where the ’ss’ subscript means the variables given no shock. It follows that:

∂ log ΘG
t

∂ log Yt
/

∂ log ΘM
t

∂ log Yt
=

(µG − 1)ḡt,ss

(µM − 1)m̄t,ss

VM
t,ss

VG
t,ss

(
∂ log ḡt
∂ log Zt

+
∂ log Pt
∂ log Zt

)
(

∂ log m̄t
∂ log Zt

+
∂ log Pt
∂ log Zt

) (91)

From equation (24), we have:

PM
t Mt = AM

t µMPtm̄t = αMPtYt, (92)

which implies that:

m̄t =
β

µG

Yt

AM
t

. (93)

Similarly, by equation (85) and (81):

ḡt =
AM

t

AG
t

µMαM

µG(1− αL − αM)

((AG
t
)1−µG µG

ξ−1
f

)ρ−1

+ 1

−1

m̄t (94)

Therefore, since AM
t

∂ log m̄t

∂ log Yt
=

∂ log(Yt/AM
t )

∂ log Yt
= 1, (95)

∂ log ḡt

∂ log Yt
=

∂ log m̄t

∂ log Yt
. (96)

It follows that:

∂ log ḡt

∂ log Yt
/

∂ log m̄t

∂ log Yt
= 1 (97)

Therefore,

∂ log ΘG
t

∂ log Yt
/

∂ log ΘM
t

∂ log Yt
=

(µG − 1)ḡt,ss

(µM − 1)m̄t,ss

VM
t,ss

VG
t,ss

. (98)

Because ḡt/m̄t is increasing over time, it implies that the value of a green variety is
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more backloaded than the value of a non-green variety:

(µG − 1)ḡt,ss

VG
t,ss

<
(µG − 1)m̄t,ss

VM
t,ss

(99)

Therefore,

∂ log ΘG
t

∂ log Yt
/

∂ log ΘM
t

∂ log Yt
< 1, (100)

holds.
■

Proof of Lemma C.1. Define

Ξ̃k
t =

∞

∑
s=0

ϕs Et

[
Λt,t+sΠk

t+s,ss

]
(101)

for k ∈ {M, G}, where Ξk
t = ∂ log Ξ̃k

t /∂ log Yt. Note that

∂ Ξ̃I
t

∂ Yt
= ∂

∞

∑
s=0

ϕs Et

[
Λt,t+sΠI

t+s,ss

]
/∂ Yt (102)

=
∞

∑
s=0

ϕs Et

[
∂ Λt,t+s

∂ Yt
ΠI

t+s,ss

]
(103)

Note that by definition of the SDF:

Λt,t+s =
h=s−1

∏
h=0

Λt+h,t+h+1. (104)

Consider

∂ log Λt+s,t+s+1

∂ log Yt
> 0. (105)

This implies the procyclicality of SDF is increasing in the time horizon of discounting (i.e.,
∂ log Λt,t+s

∂ log Yt
is increasing in s.)

Because the value of green variety is more backloaded, by equation (103),

∂ log Ξ̃G
t

∂ log Yt
>

∂ log Ξ̃M
t

∂ log Yt
. (106)
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Conversely, if

∂ log Λt+s,t+s+1

∂ log Yt
< 0, (107)

it holds:

∂ log Ξ̃G
t

∂ log Yt
<

∂ log Ξ̃M
t

∂ log Yt
, (108)

which completes the proof. ■

Proof of Corollary C.1. Consider a one-shot shock to Zt or ϱD
t . We can decompose the pra-

tial derivative into the cash flow and discount rate components:

∂ logV k
t

∂ log Yt
=

ΠI
t,ss

V I
t,ss

∂ log ΠI
t

log Yt
+ ∑

h=1

(1− c)ΠI
t+h,ss

V I
t,ss

∂ log ΛI
t,t+h

log Yt
. (109)

for k ∈ {M, G}. By equation (95) and (96):

∂ log ḡt

∂ log Yt
=

∂ log m̄t

∂ log Yt
= 1 (110)

Combining with the market clearing of final goods:

∂ log Ct

∂ log Yt
= 1. (111)

Note that:

log Λt,t+s = log β + log Ct − log Ct+s − log ϱD
t + log ϱD

t+1. (112)

Consider a Zt shock:

∂ log Λt,t+s

∂ log Yt
= 1. (113)
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It follows:

∂ logV I
t

∂ log Yt
=

ΠI
t,ss

V I
t,ss

+ ∑
h=1

(1− c)ΠI
t+h,ss

V I
t,ss

(114)

= c
ΠI

t,ss

V I
t,ss

+ (1− c). (115)

And because the profit of green variety is more backloaded:

ΠG
t,ss

VG
t,ss

<
ΠM

t,ss

VM
t,ss

. (116)

It follows:

∂ logVG
t

∂ log Yt
<

∂ logVM
t

∂ log Yt
. (117)

If it is the preference shock,

∂ log Λt,t+s

∂ log Yt
= 1− log ϱD

t
∂ log Yt

. (118)

Therefore,

∂ logV I
t

∂ log Yt
=

ΠI
t,ss

V I
t,ss

+ ∑
h=1

(1− c)ΠI
t+h,ss

V I
t,ss

(1− log ϱD
t

∂ log Yt
) (119)

= c
ΠI

t,ss

V I
t,ss

+ (1− c)− ∑
h=1

(1− c)ΠI
t+h,ss

V I
t,ss

log ϱD
t

∂ log Yt
. (120)

Because the more backloaded profit of green:

c
ΠG

t,ss

VG
t,ss

< c
ΠM

t,ss

VM
t,ss

, ∑
h=1

(1− c)ΠG
t+h,ss

VG
t,ss

> ∑
h=1

(1− c)ΠM
t+h,ss

VM
t,ss

. (121)

As a result,

∂ logVG
t

∂ log Yt
<

∂ logVM
t

∂ log Yt
, (122)

which completes the proof. ■
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Proof of Proposition 3.3. By the definition of SM
t and SG

t :

SM
t = φt,MLt,M = ζM AM

t (LS
t,M)ν, (123)

SG
t = φt,GLt,G = ζG AG

t (LS
t,G)

ν. (124)

And by the innovator’s problem given by equation (34) and (34), the proposition is equiv-
alent to show the relative value of green versus non-green innovation is countercyclical.
Formally,

∂ log(VG
t /VM

t )

∂ log Yt
< 0. (125)

Therefore it directly follows from Corollary C.1. ■

Proof of Proposition 3.4. From equation (34) and (35):

LS
it,M =

(
Ws

t
AM

t ζMVm
t

) 1
ν−1

, (126)

LS
it,G =

(
Ws

t

AG
t ζMV g

t

) 1
ν−1

. (127)

Therefore, in equilibrium, the new varieties can be solved as:

SM
t = AM

t ζM

(
LS

t,M

)ν
= AM

t ζM

(
Ws

t
AM

t ζMVm
t

) ν
ν−1

, (128)

SG
t = AG

t ζG

(
LS

t,G

)ν
= AG

t ζG

(
Ws

t

AG
t ζGV g

t

) ν
ν−1

. (129)

It follows that

∂ log SG
t

∂ log Yt
= − ν

1− ν

(
∂ log Ws

t
∂ log Yt

− ∂ logV g
t

∂ log Yt

)
. (130)

Therefore, SG
t is countercyclical if

∂ log Ws
t

∂ log Yt
>

∂ logV g
t

∂ log Yt
. (131)

Next, we show that SM
t must be procyclical. Combining the skilled labor demand
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conditions (35) and (34) with the skilled labor market clearing condition:

LS
it,M =

(
Ctω̄

s(LS
t,M + LS

t,G)
ψ

ϱD
t AM

t ζMVm
t

) 1
ν−1

, (132)

LS
it,G =

(
Ctω̄

s(LS
t,M + LS

t,G)
ψ

ϱD
t AG

t ζGV g
t

) 1
ν−1

. (133)

By combining equations (132) and (133) with the skilled labor market clearing condi-
tion, we obtain:

LS
t =

(
Ctω̄

s

ϱD
t

) 1
ν−1−ψ [

(AM
t ζMVm

t )−
1

ν−1 + (AG
t ζGV g

t )
− 1

ν−1

] ν−1
ν−1−ψ (134)

=

(
Ctω̄

s

ϱD
t

) 1
ν−1−ψ

(AM
t ζMVm

t )
1

ψ+1−ν

1 +

(
AM

t ζMVm
t

AG
t ζGV g

t

) 1
ν−1


1−ν
ψ+1−ν

. (135)

Substituting, we obtain:

LS
it,M =

(
Ctω̄

s

ϱD
t

) 1
ν−1−ψ (

AM
t ζMVm

t

) 1
ψ+1−ν

1 +

(
AM

t ζMVm
t

AG
t ζGV g

t

) 1
ν−1


ψ
ν−1−ψ

, (136)

LS
it,G =

(
Ctω̄

s

ϱD
t

) 1
ν−1−ψ

1 +

(
AM

t ζMVm
t

AG
t ζGV g

t

) 1
ν−1


ψ
ν−1−ψ (

AM
t ζMVm

t

) 1
ψ+1−ν

(
AG

t ζGV g
t

AM
t ζMVm

t

) 1
1−ν

.

(137)

Because ∂ log Ct/∂ log Yt = ∂ log ΠM
t /∂ log Yt, from the definition of the value of non-

green varieties:

∂ log Ct

∂ log Yt
<

∂ logVM
t

∂ log Yt
. (138)

And because VM
t is more procyclical than VG

t from Proposition 3.3, it follows that LS
t,M
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must be procyclical, or equivalently

∂ log SM
t

∂ log Yt
> 0. (139)

■

Proof of Corollary 3.1. Recall, in equilibrium:

LS
t,M =

(
Ctω̄

s

ϱD
t

) 1
ν−1−ψ (

AM
t ζMVm

t

) 1
ψ+1−ν

1 +

(
AM

t ζMVm
t

AG
t ζGV g

t

) 1
ν−1


ψ
ν−1−ψ

, (140)

LS
t,G =

(
Ctω̄

s

ϱD
t

) 1
ν−1−ψ

1 +

(
AM

t ζMVm
t

AG
t ζGV g

t

) 1
ν−1


ψ
ν−1−ψ (

AM
t ζMVm

t

) 1
ψ+1−ν

(
AG

t ζGV g
t

AM
t ζMVm

t

) 1
1−ν

.

(141)

If ψ goes to infinity:

LS
t,M =

1 +

(
AM

t ζMVm
t

AG
t ζGV g

t

) 1
ν−1
−1

, (142)

LS
t,G =

1 +

(
AG

t ζGV g
t

AM
t ζMVm

t

) 1
ν−1
−1

, (143)

where LS
t,G is countercyclical. And for ψ = 0, LS

t,G must be procyclical. Therefore, by the
intermediate value theorem, the proposition holds. ■

Proof of Corollary 3.2. The same proof of Proposition 3.4 applies. Because the moneatry
shock affects the value of innovations only through affecting Yt. ■

Proof of Proposition C.1 - C.3. When there is brown innovation, the relationship of brown
and green energy in equilibrium becomes:

Ft

Gt
=

(
PG

t
PF

t

)
=

(
(AG

t )
1−µG µG

(AF
t )

1−µF µFξ−1
f

)
. (144)
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The green transition happens if:

(AG
t )

µG−1µG

(AF
t )

µF−1µFξ−1
f

(145)

is increasing over time. This condition requires the green innovation outpaces the brown
innovation. However, given the existence of green transition, other conditions for Lemma 3.1,
Proposition 3.3 and 3.4 are exactly the same for the model with or without brown inno-
vation. Therefore the same proof applies. ■

Proof of Proposition C.4. By the profit maximization problem for firms producing green
and non-green product lines in equation (65) and (67), and the demand function of green
and non-green product lines implied by equation (63), the optimal price of green and
non-green is:

pm
ht = µMψAm

ht, pg
jt = µGψAg

jt. (146)

Therefore, the production of green and non-green products across product lines are
homogeneous, which we denote as m̄t, ḡt. Therefore:

PM
t = (AM

t )1−µM µMψ, PG
t = (AG

t )
1−µG µGψ, (147)

Mt = (AM
t )µM m̄t, Gt = (AG

t )
µG ḡt, (148)

where

AM
t =

∫ 1

0
Am

ht dh, AG
t =

∫ 1

0
Ag

jt dj. (149)

Recall from the baseline model, we derive:

PG
t Gt

PM
t Mt

=
αM

(1− αL − αm)

( ft

Gt

) ρ−1
ρ

+ 1

−1

. (150)

Therefore, the same condition as equation (85) holds

ḡt

m̄t
=

AM
t

AG
t

µMαM

µG(1− αL − αM)

( ft

Gt

) ρ−1
ρ

+ 1

−1

. (151)
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Henceforth ḡt
m̄t

is increasing given the green transition, which completes the proof.
■

Proof of Proposition C.5. Recall the optimization condition of the innovator’s problem:

ζMṼm
ht = ws, (152)

ζGṼg
jt = ws, (153)

where ws denotes the normalized wage of skilled labor, which is assumed constant in this
partial equilibrium setting. Ṽm

ht and Ṽg
jt represent the normalized value of innovation:

Ṽm
ht = πm

ht + (1− ϕm
ht)Et[Λt,t+1Ṽm

ht+1], (154)

Ṽg
jt = π

g
jt + (1− ϕ

g
jt)Et[Λt,t+1Ṽg

jt+1]. (155)

Thus, the optimality condition can be rewritten as:

ϕm
ht =

πm
ht + Et[Λt,t+1Ṽm

ht+1]− ζ−1
M ws

Et[Λt,t+1Ṽm
ht+1]

, (156)

ϕ
g
jt =

π
g
jt + Et[Λt,t+1Ṽg

jt+1]− ζ−1
G ws

Et[Λt,t+1Ṽg
jt+1]

. (157)

By symmetry, we drop the subscripts j and h in the following expressions. The ratio
of green to non-green innovation intensities can be expressed as:

ϕ
g
t

ϕm
t

=
π

g
t + Et[Λt,t+1Ṽg

t+1]− ζ−1
G ws

πm
t + Et[Λt,t+1Ṽm

t+1]− ζ−1
M ws

× Et[Λt,t+1Ṽm
t+1]

Et[Λt,t+1Ṽg
t+1]

. (158)

Now consider a one-shot shock to Zt. Regarding the second term
Et[Λt,t+1Ṽm

t+1]

Et[Λt,t+1Ṽg
t+1]

, since

the shock does not affect Ṽm
t+1, and the effect of the shock on Λt,t+1 cancels out between

numerator and denominator, this term remains unaffected by the one-shot shock.
For the first term, Proposition C.4 has established that the relative profit of green inno-

vation grows compared to that of non-green innovation. Therefore, the logic of the proof
of Proposition 3.3 applies here as well.

■
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Jarociński, Marek and Peter Karadi (2020). “Deconstructing monetary policy surprises—the
role of information shocks”. American Economic Journal: Macroeconomics 12.2, pp. 1–43.

Kahle, Kathleen M. and René M. Stulz (2017). “Is the US public corporation in trouble?”
Journal of Economic Perspectives 31.3, pp. 67–88.

Känzig, Diego R. (2021). “The macroeconomic effects of oil supply news: Evidence from
OPEC announcements”. American Economic Review 111.4, pp. 1092–1125.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman (2017). “Tech-
nological innovation, resource allocation, and growth”. The Quarterly Journal of Eco-
nomics 132.2, pp. 665–712.
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