The Macroeconomic Effects of Supply Chain Shocks:
Evidence from Global Shipping Disruptions®

Diego R. KénzigJr Ramya Raghavani

July, 2025

Abstract

This paper studies the macroeconomic consequences of global supply chain disrup-
tions, focusing on maritime choke points critical to international trade. We identify
supply chain shocks based on disruptions at key locations like the Suez and Panama
Canal, using narrative accounts and high-frequency financial data. These shocks lead
to a significant and persistent increase in shipping costs, which in turn has substan-
tial economic consequences. Economic activity falls significantly and producer and
consumer prices rise persistently. Global shipping capacity initially contracts before
expanding sluggishly in response to persistently elevated shipping costs. The shocks
also lead to a significant increase delivery times and industry shortages but are not
associated with changes in geopolitical risk—consistent with our interpretation of ex-
ogenous supply chain disruptions. Our reduced-form evidence provides new empir-

ical targets for quantitative trade and network models.
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1. Introduction

Over the last decades, supply chains have become increasingly interconnected. Recent
events such as the Covid pandemic, Russia’s invasion of Ukraine, and extreme weather
have all highlighted the fragility of global supply chains. Such disruptions pose sig-
nificant risks to the global economy, as they can have profound macroeconomic conse-
quences, affecting output, inflation and employment across countries. Better understand-
ing of the macroeconomic impacts of supply chain disruptions is crucial to inform policy
responses aimed at building more resilient and adaptable supply chains in an increasingly
uncertain global environment.

In this paper, we provide new evidence on the macroeconomic implications of sup-
ply chain disruptions. Our identification strategy leverages the fact that global supply
chains critically rely on maritime trade, which in turn is heavily dependent on a small
number of strategic choke points. The most important choke points are the Suez Canal
and the Panama Canal. We perform a comprehensive narrative account of disruptive in-
cidents at these choke points, such as groundings, collisions or extreme weather events.
These events can cause major disruptions to the global shipping network and are plau-
sibly exogenous to the global economy. In a next step, we isolate the market impact of
the shipping disruption by the change in shipping rates in a narrow window around the
event, exploiting high-frequency financial data. To address remaining concerns about
predictability, we orthogonalize the surprises with respect to macroeconomic and finan-
cial data pre-dating the disruptive events. Using the resulting series as an instrument in
a VAR model of the global economy, we identify a structural supply chain shock.

An adverse supply chain shock causes a strong, persistent increase in shipping rates,
with effects that extend well beyond the initial disruption. Even short-lived disruptions
can trigger ripple effects lasting for months, as ship rerouting reduces effective capac-
ity, creates bottlenecks, and disrupts the structure of the global shipping network. The
increase in shipping cost passes-through commodity prices, which increase significantly
with some lag. Global shipping capacity initially contracts before expanding sluggishly
in response to persistently elevated shipping costs. Importantly, the shock does not lead
to any significant changes in geopolitical risk. This is desired as we purposefully abstract
from disruptive events related to geopolitical tensions as they may affect the global econ-
omy through channels unrelated to supply chains.

Global supply chain shocks also have meaningful effects on the U.S. economy. In-
dustrial production falls significantly and persistently and U.S. consumer prices increase
persistently. These stagflationary effects create a trade-off for monetary policy, reflected
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in the ambiguous response of the short-term interest rate. Finally, the shock leads to a
significant depreciation of the dollar.

Quantitatively, a shock increasing shipping rates by 10 percent leads to an increase in
commodity prices by about 2 percent, an increase in the global shipping capacity by 0.3
percent, a fall in U.S. industrial production falls by around 0.5 percent and a rise in the
U.S CPI increases by 0.2 percent.

We also show that the shock leads to a significant increase in supplier delivery times
and an uptick in industry shortages—corroborating the interpretation of a supply chain
shock. The sluggish increase in commodity prices together with the delayed increase in
the shipping capacity also suggests that we are not merely picking up commodity price
shocks.

A comprehensive series of sensitivity checks suggests that the results are robust along
a number of dimensions, including the model specification, the sample period and the
identification strategy. Specifically, the results are robust to relaxing the invertibility re-
quirement or estimating the dynamic responses based on local projections.

Equipped with our identified supply chain shocks, we investigate the role of supply
chain pressures in the recent inflationary episode. We find that supply chain shocks con-
tribute meaningfully to the variation in inflation over the 2020-2022 period: they explain
a considerable share of the rise in inflation through 2021, consistent with the timing of
widespread logistical bottlenecks and maritime stress. However, they fail to account for
the full extent of the inflation surge—suggesting that other factors such as fiscal stimu-
lus, accommodative monetary policy and energy price shocks played an important role
as well.

Counterfactual analyses suggest that monetary policy plays an important role in the
transmission of supply chain shocks. A more aggressive monetary response could stabi-
lize prices in the face of supply chain shocks, however, this comes at a cost of a signifi-

cantly steeper fall in output.

Related literature and contribution. This project contributes to a burgeoning literature
studying the economic impacts of supply chain disruptions from both empirical and the-
oretical angles. Recent years have seen unprecedented strain on global supply chains—
exacerbated by climate change and extreme weather—making it essential to understand
how to enhance their resilience and adaptability.
A recent empirical literature studies the effects of supply chain pressures and ship-
ping costs on the macroeconomy (Carriere-Swallow et al., 2023; Herriford et al., 2016;
Jacks and Stuermer, 2021, among others). A number of studies have also constructed
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indices to directly measure supply chain pressures, using real-time congestion of contain-
erships in major ports (Bai et al., 2024) or using purchasing managers index and trans-
portation costs (Benigno et al., 2022), to assess how supply chain shocks affect economic
outcomes. Caldara, Iacoviello, and Yu (2024) construct a newspaper based measure of
input shortages and find that such shortages are associated with persistent inflationary
effects. Ferndndez-Villaverde, Mineyama, and Song (2024) study the effects of geopoliti-
cal fragmentation and find the strongest effects in sectors that are closely linked to global
markets. At a more disaggregated level, Blaum, Esposito, and Heise (2023) construct a
measure of supply chain risk at the firm level based on transaction data on U.S. man-
ufacturing imports, and show that shipping delays are associated with lower firm-level
employment and revenue. Castro-Vincenzi et al. (2024) study how firms structure sup-
ply chains under climate risk. We contribute to this literature by providing new evidence
pointing to considerable macroeconomic effects of supply chain disruptions.

Methodologically, our approach builds on the literature on high-frequency identifi-
cation, which was developed in the monetary policy setting (Gertler and Karadi, 2015;
Giirkaynak, Sack, and Swanson, 2005; Kuttner, 2001; Nakamura and Steinsson, 2018,
among others) and more recently employed in the context of oil and carbon markets
(Kanzig, 2021; 2023). In this literature, policy surprises are identified using high-
frequency asset price movements around policy events, such as FOMC or OPEC meet-
ings. The idea is to isolate the impact of policy news by measuring the change in asset
prices in a tight window around the events. We employ this approach in the context of
global supply chains, allowing for credible identification under relatively weak structural
assumptions.

On the theoretical side, we contribute to an influential theoretical literature that stud-
ies how supply chain disruptions propagate through production networks and can have
large aggregate impacts (Acemoglu, Akcigit, and Kerr, 2016; Acemoglu and Tahbaz-
Salehi, 2024; Alessandria et al., 2023; Baqaee and Farhi, 2019; Carvalho and Tahbaz-
Salehi, 2019; Comin, Johnson, and Jones, 2023, among others). To date, there is limited
evidence on the substitution possibilities across firms and sectors. Prominent estimates
include Atalay (2017) for the inner-nest elasticities of different materials, and Oberfield
and Raval (2021) and Carvalho et al. (2021) for the outer-nest elasticities of materials, cap-
ital and labor. Most of the networks literature focuses on static settings, taking a longer
term perspective. There are some exceptions, such as Afrouzi and Bhattarai (2023); La’O
and Tahbaz-Salehi (2022); Rubbo (2023), and Minton and Wheaton (2023), however these
papers focus on inflation and monetary policy. There is little work that aims to estimate
short- and long-term substitution possibilities across firms and sectors. Our framework
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allows to obtain reduced-form elasticities of substitution across production factors, which
can be used to discipline quantitative network models.

Our analysis also connects to the international trade literature, where iceberg trade
costs are central to models of international production and shock transmission (Eaton
and Kortum, 2002; Melitz, 2003). Recent work extends these frameworks to include
production networks and global value chains, emphasizing how trade frictions influence
the propagation of shocks across countries (Antras and De Gortari, 2020; Caliendo and
Parro, 2015; Costinot and Rodriguez-Clare, 2014). In this literature, trade elasticities are
routinely calibrated based on aggregate flows. Direct evidence on the substitutability
between domestic and foreign inputs in response to global supply chain shocks as well
as the degree of heterogeneity in pass-through across countries is more limited—though
notable exceptions include Boehm, Flaaen, and Pandalai-Nayar (2019) and Carvalho et
al. (2021). Our reduced-form approach can offer empirical moments on both margins,
providing useful discipline for structural trade models that seek to capture the macroeco-

nomic implications of global trade frictions.

Outline. The paper proceeds as follows. Section 2 introduces our strategy to identify
supply chain shocks. We discuss the role of choke points in global supply chains, provide
a detailed narrative account of disruptions at these choke points, and construct a series of
shipping cost surprises based on high-frequency data on shipping rates. In Section 3, we
introduce our empirical framework. Section 4 presents our empirical results. In Section 5,
we discuss how our estimates can be used to inform structural trade and network models.

Section 6 concludes.

2. Identification Strategy

Global supply chains are heavily reliant on maritime trade, with over 80 percent of the
world’s trade by volume transported by sea. As a consequence, shipping rates offer a
timely barometer of supply chain conditions.

Figure 1 shows the evolution of shipping rates, as proxied by the Baltic Dry Index
(BDI), from the 1970s to date. The BDI tracks the cost of transporting bulk commodities
like iron ore, coal, and grain across major shipping routes and is commonly used as a
proxy for global shipping rates.

Fluctuations in shipping rates are driven by changes in global demand and supply.
The sharp spikes during the oil shocks of the 1970s were clearly driven by supply dis-

ruptions. The surge in the 2000s, by contrast, was largely driven by booming Chinese
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Figure 1: Global Shipping Rates as a Barometer of Supply Chain Pressures
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demand for commodities. The Covid-19 period saw a mix of both—disrupted logistics
and a rapid rebound in global goods demand. The fact that shipping rates are affected by
both demand and supply dynamics complicates the identification of supply chain shocks
based on shipping price movements. Simply regressing economic variables of interest on
shipping costs will in general lead to biased results.

We overcome this challenge by leveraging the reliance of global supply chains on crit-
ical choke points combined with high-frequency financial information to isolate some
variation in shipping rates that is driven by supply chain disruptions and plausibly ex-
ogenous to the world economy.

2.1. Choke Points in Global Supply Chains

Maritime trade facilitates the movement of goods across vast distances at a relatively low
cost and is crucial to the functioning of international commerce. Figure 2 displays the
main global sea trade routes together with associated shipping times. A key feature of
global shipping markets is the stark reliance on certain critical points, known as maritime
choke points.

Maritime choke points are defined as narrow waterways that connect global sea trade
routes. Such choke points are characterized by a narrow width, high share of global
maritime trade, high shipping traffic, and few viable alternate routes. Disruptions at
these choke points can have far-reaching consequences for global supply chains. The two
most critical choke points are the Suez Canal and the Panama Canal, which we focus on



in this paper. We start by providing some more background information on these two

choke points.

Suez Canal. The Suez Canal, located in Egypt, is a maritime choke point that con-
nects the Mediterranean Sea and Red Sea through the Gulf of Suez. The Suez Canal
provides the shortest sea trade route between Europe and Asia. For instance, vessels
traveling through the Suez Canal for journeys between the Persian Gulf and Amsterdam-
Rotterdam-Antwerp save 15 days of transit time in comparison to alternative routes (see
Figure 2). Over 15 percent of international maritime trade passes through the Suez Canal,
rendering international trade highly vulnerable to disruptions in the Suez Canal.

Figure 2: Major Global Sea Trade Routes, Choke Points, and Shipping Times
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Notes: In Brown: Vessels traveling through the Suez Canal for journeys between the Persian Gulf and
Amsterdam-Rotterdam-Antwerp save 15 days of transit time in comparison to alternative routes. In Blue:
Vessels traveling through the Panama Canal for journeys between the U.S. Gulf Coast and Chiba, Japan
save 17-21 days of transit time in comparison to alternative routes. Source: U.S. Energy Information Ad-
ministration (2024).

Throughout its history, the Suez Canal has experienced numerous disruptions to ship-
ping traffic due to its narrow, constrained passage—from vessel groundings and collisions
to fires, piracy incidents, and adverse weather conditions (see Figure 3a). One such no-
table and recent incident occurred on March 23, 2021, when Ever Given, a container ship,
ran aground and became lodged sideways across the canal for six days, blocking the trade
route. While particularly significant, the Ever Given grounding is one of many disrup-

tions that have affected this critical maritime choke point over the years. As an example,



we provide below an excerpt of a Reuters news article discussing a grounding in the Suez
Canal on November 8, 2004 (Reuters, 2004):

Egypt’s Suez Canal has been blocked by a broken-down oil tanker and could stay shut
for another two days (...)

Navigation came to a standstill late on Saturday when the 154,000 deadweight-tonne
Liberian-flagged vessel Tropic Brilliance, carrying a cargo of crude, ran aground while
passing through the canal. (...)

Shipping sources expected traffic to be disrupted until Wednesday at least.

Shipping disruptions in the Suez Canal, such as the example above, are widely dis-

cussed across both mainstream and maritime-specific news agencies.

Figure 3: Maritime Choke Points
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Notes: Two of the world’s most critical maritime choke points. Panel (a) shows the Ever Given container
ship obstructing the Suez Canal during the March 2021 grounding, which disrupted global trade for nearly
a week. Panel (b) shows vessels transiting the Panama Canal’s lock system, which lifts and lowers ships
through a freshwater channel, via Gatun Lake, to connect the Atlantic and Pacific Oceans.

Panama Canal. The Panama Canal, located in Panama, is a maritime choke point that
connects the Atlantic Ocean and Pacific Ocean. The Panama Canal provides the short-
est sea trade route between the oceans and accounts for around 46 percent of the trade
between Northeast Asia and the U.S. East Coast. For instance, vessels traveling through



the Panama Canal for journeys between the U.S. Gulf Coast and Chiba, Japan save 17-21
days of transit time in comparison to alternative routes (see Figure 2). Over 5 percent of
international maritime trade passes through the Panama Canal.

Due to its narrow passage and reliance on freshwater for lock operations (see Figure
3b), the Panama Canal has experienced numerous disruptions to shipping traffic, from
adverse weather conditions and fires to vessel groundings and collisions. Notably, in
recent years, the shipping traffic through the Panama Canal has often been subject to
transit and draft restrictions that limit the number and capacity of vessels, respectively,
due to adverse weather conditions. As an example, we provide below an excerpt of a
Reuters news article discussing a draft restriction in the Panama Canal on August 7, 2015
(2015):

The Panama Canal Authority will temporarily lower the maximum draft of ships pass-

ing through the canal, due to droughts caused by El Nino, authorities said on Friday.

Starting on Sept. 8, the greatest draft allowed will be 39 feet (11.89 m), down from
the current maximum of 39.5 feet (12.04 m), the Panama Canal Authority said.

The change could affect about 20 percent of ships that use this route (...)

Restrictions, as in the example above, are imposed by the Panama Canal Authority
(ACP), the authority responsible for the administration, operation, and maintenance of
the canal. When restrictions are imposed, the authority issues an “Advisory to Shipping”
on their official website. Restrictions due to adverse weather conditions and other ship-
ping disruptions are widely reported by both mainstream and maritime-specific news

agencies.

2.2. A Narrative Analysis of Supply Chain Disruptions

We compile a comprehensive narrative account of events that disrupted shipping traffic
through the Suez and the Panama Canal. For the Suez Canal, no official archive of disrup-
tions exists. Therefore, we rely on leading newswires, searching for events that disrupted
traffic in the canal, such as collisions, groundings, or storms. For the Panama Canal, we
use official shipping advisories to identify draft restrictions but confirm the salience of
these restrictions through contemporaneous newspaper reports.

Our dataset identifies 139 events that disrupted shipping traffic in the two canals be-
tween 1970 and 2022, including 94 events in the Suez Canal and 45 events in the Panama

Canal. Table 1 provides an overview of the events in our dataset. The events in the Suez



Table 1: Disruptive Events at Maritime Choke Points

Panama Canal Suez Canal

Event Type Number Event Type Number
Grounding 1 Grounding 57
Collision 1 Collision 8
Fire 1 Fire 5

El Nino/Rainfall 30 Weather 9
Landslide/Flooding 3 Sandstorm 7
Drought 6 Piracy/Rebels 2
Other 3 Other 6
Total 45 Total 94

Canal include 57 vessel groundings, 8 vessel collisions, and 16 weather-related disrup-
tions. The events in the Panama Canal include 39 weather-related disruptions, associated
with El Nino events, landslides or floodings, as well as a few grounding and collisions.
In selecting events, we take great care to ensure that they are plausibly exogenous to
the global economy. Specifically, we include vessel groundings, collisions, fires, piracy
incidents, and adverse weather conditions that are plausibly exogenous to economic ac-
tivity, while excluding events linked to geopolitical tensions in the Middle East. Some
disruptions—such as weather-related restrictions—may be partially forecastable. In these
cases, isolating the unanticipated component is crucial to avoid bias from anticipatory ef-

fects.

2.3. High-frequency Identification

The identified events vary in severity, and some may be at least partially anticipated. To
gauge the importance of each event while accounting for potential anticipation effects,
we adopt a high-frequency identification strategy that leverages financial market data on
shipping rates.

The idea is the following. Disruptive events along global shipping routes are closely
monitored by market experts and the reporting of these events can lead to significant
market reactions. Thus, we can isolate the impact of a disruptive event by measuring the
change in shipping rates in a tight window around the disruption. To the extent that the
global economic outlook is priced at the time of the event and unlikely to change over
the short event window, we isolate some unexpected variation in shipping rates that is

plausibly exogenous. Doing this systematically across all our events, we construct a series
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of high-frequency shipping cost surprises, i.e. the unexpected component of shipping
rates associated with a disruption in shipping markets. These surprises can be used to
identify a structural supply chain shock.

Measuring shipping costs. We use the Baltic Dry Index (BDI), published daily by the
London-based Baltic Exchange, to measure global shipping costs. The BDI is a composite
of timecharter rates across three vessel classes—Capesize (40 percent), Panamax (30 per-
cent), and Supramax (30 percent)—each of which reflects average shipping rates across a
wide range of global dry bulk trade routes. As such, it provides a comprehensive measure
of maritime transport costs for bulk commodities.

We focus on the BDI for two main reasons. First, it is a well-established barometer of
global trade activity and is closely followed by market participants. Second, it is available
at a daily frequency and spans a long historical sample period, making it well-suited for
our time-series high-frequency identification approach.

A potential limitation is that the BDI covers only dry bulk shipping, excluding con-
tainerized freight. Data on container rates are only available at lower frequency and with
more limited historical coverage. However, since freight rates tend to co-move across
shipping segments due to shared cost drivers and capacity constraints, the BDI remains a
broadly informative proxy for global shipping conditions.

Construction of shipping cost surprises. We construct a series of shipping cost sur-
prises by measuring how shipping costs change around the disruptive events we identify.
Specifically, we record the percentage change in the shipping costs on the event reporting
day compared to the last trading day before the event:!

BDI BDI
Pd B Pd—l

SCSurprisey = W’ @)
where d indicates the date of the event, and PEDI is the BDI price. Note that if an event
is partially anticipated, this will isolate the unexpected component of the given event,
provided that these expectations are priced in the market.

Figure 4 shows the shipping cost surprise series at the daily frequency. Events that dis-

rupt shipping traffic can have a significant impact on shipping costs, with several events

Typically, event reporting takes place on the same day as the event itself. However, when the event re-
porting occurs after the event, we use the event reporting day to compute the surprise, since our identifi-
cation strategy relies on the event being monitored by market participants. Additionally, if trading did not
take place on the event reporting day, we use the next trading day to compute the surprise.
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Figure 4: Shipping Cost Surprise Series
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moving shipping costs in excess of 3 percent. For instance, on September 13, 2006, an
Egyptian dredger sank in the Suez Canal, causing a temporary closure of the waterway
as a rescue operation was under way to find missing crew members. This resulted in an
increase in shipping costs of 2.9 percent.

On April 1, 2016 and April 14, 2016, reporting on the extensions of draft restrictions by
the ACP due to El Nino-related droughts caused shipping costs to increase by 4.8 percent
and 5.2 percent, respectively. On May 11, 2016, the draft restrictions were postponed due
to rainfall, which led to a fall in shipping costs by around 3 percent. The latter is an
example of a negative shipping cost surprise. Negative surprises may arise either from
events that ease previous restrictions or from news indiciating that a disruption is less
severe than previously anticipated. However, we will assess the robustness of our results
when only focusing on positive surprises.

Finally, on September 14, 2022, reporting of a rare overflow at the Panama Canal’s
Gatun Locks, that temporarily blocked the west lane, resulted in an increase in shipping
costs of 12.5 percent. On December 15, 2022, traffic at the Panama Canal’s Miraflores locks
was temporarily suspended due to a fire, again leading to an increase in shipping costs of
8.7 percent.

Predictability of shipping cost surprises. An influential literature finds that in the mon-

etary policy context, high-frequency surprises are predictable based on publicly available
macroeconomic and financial data preceding the policy announcement (Bauer and Swan-
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son, 2023; Cieslak, 2018; Miranda-Agrippino and Ricco, 2021). This predictability chal-
lenges the interpretation of such surprises as primitive “shocks” and may bias estimates
of their dynamic effects.

Are shipping cost surprises also predictable based on past macroeconomic and finan-
cial variables? To assess this, we regress the daily surprise series on relevant information
available before the event:

SCSurprise; = a + B’ X4_ + 14, ()

where d indexes days with shipping disruptions, SCSurprise; denotes the shipping cost
surprise series, and X;_ is a set of predictors known before the event day d, as indicated
by the subscript d—.

As predictors, we consider a wide range of macroeconomic and financial variables.
For macroeconomic and financial indicators, we include the surprise components of the
latest U.S. industrial production, ISM Purchasing Managers’ Index (PMI), producer price
index, and the trade balance releases prior to each event. These surprises are defined as
the difference between the actual release and Bloomberg survey expectations. We also
include the log change in the S&P 500 index and the yield curve slope, measured over the
three months leading up to the event. For commodity markets, we add the three-month
log changes in the WTI crude and the coal price. Finally, to account for geopolitical risk,
we include the three-month change in the index by Caldara and Iacoviello (2018).

Table 2 presents the results. There is limited evidence that shipping cost surprises are
predictable by macroeconomic and financial variables. The R? is generally low, ranging
from 0.03 to 0.09 across specifications. The only predictor that is statististically significant
at conventional levels is the ISM surprise. This is not necessarily problematic, as it may
stem from plausibly exogenous factors like unusual weather patterns. Alternatively, a
high ISM may indicate tighter supply chains, thereby making disruptions more binding
or increasing their salience.

To account for this potential predictability, we follow the approach by Bauer and
Swanson (2023). Specifically, we construct a refined shipping cost surprise series as the
residual from the predictive regression (2), controlling for the full information set (d). The
resulting series SC%ised = 174, shown as the blue bars in Figure 4, closely tracks the

raw series, with a correlation coefficient of over 0.95.
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Table 2: Predictability of Shipping Cost Surprises

Shipping cost surprise: (a) (b) (@] (d)

Macronews  Financials ~Commodities  Other

IP surprise -0.068 -0.276 -0.226 -0.225
(0.410) (0.364) (0.326) (0.332)

ISM surprise 0.152 0.169 0.216 0.216
(0.095) (0.107) (0.103) (0.103)

PPI surprise -0.056 -0.020 0.115 0.113
(0.534) (0.511) (0.563) (0.578)

Trade balance surprise 0.076 0.099 0.104 0.104
(0.066) (0.073) (0.073) (0.073)

S&P 500 (3M log change) -2.163 -1.036 -1.019
(2.653) (2.753) (2.591)

Yield curve slope (3M change) -0.804 -0.653 -0.652
(0.719) (0.774) (0.769)

WTI price (3M log change) 0.040 0.045
(0.777) (0.743)

Coal price (3M log change) -2.724 -2.731
(2.169) (2.105)

Geopolitical risk (3M log change) 0.000
(0.003)

R? 0.030 0.067 0.092 0.092
Adj. R? 0.000 0.023 0.034 0.026

Notes: Estimated coefficients B, R? and adj. R? from predictive regressions (2) of shipping cost surprises.
The predictors X are observed prior to the event and include: the surprise component of the most recent
U.S. industrial production, ISM PMI, producer price index, and trade balance releases in column (a); column
(b) adds the three-month change in the (log) S&P 500 and the yield curve slope; column (c) adds the three-
month log change in WTI and coal price; column (d) adds three-month log change in geopolitical risk.
Robust standard errors in parentheses.

Aggregation and additional diagnostics. Because our outcome variables of interest are
only available at the monthly frequency, we aggregate the daily surprises to a monthly

series as follows:

62
SCSurprise; = Y | BrSCSurprise, , (3)
k=1

where t is the month and t; indexes time at daily frequency. B are triangular weights as
in Gertler and Karadi (2015). By construction, in months without any events, the surprise
series takes zero value. Effectively, this approach weights an event surprise by the share
of calendar days remaining in the month, and attributing the remaining portion of the
surprise to the next month. For example, if a surprise occurs on the 7th calendar day of a
month with 30 days, 80% of the surprise will be assigned to the current month and 20%
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of the surprise will be assigned to the next month.?
To account for potential serial correlation that the temporal aggregation may intro-
duce, we follow the approach by Miranda-Agrippino and Ricco (2021) and purge the

monthly surprise series by regressing on its lags and using the residual:

12
SCSurprise; = ¢o + Z ¢;SCSurprise;_j + SCSurprise;- 4)
j=1

We perform a number of diagnostic checks on the surprise series as proposed in
Ramey (2016), in particular with regards to autocorrelation, forecastability, and corre-
lation with other structural shocks. We find no evidence that the series is serially corre-
lated. The p-value for the Q-statistic that all autocorrelations are zero is 0.99. We also find
little evidence that macroeconomic or financial variables have any power in forecasting
the surprise series. For all variables considered, the p-values for the Granger causality
test are far above conventional significance levels, with the joint test having a p-value of
0.86. Finally, we show that the surprise series is uncorrelated with other structural shock
measures from the literature, including oil, productivity, news, monetary policy, uncer-
tainty, financial, and fiscal policy shocks. Overall, this evidence supports the validity of
the shipping cost surprise series. The corresponding figures and tables can be found in

online Appendix B.

3. Econometric Approach

As illustrated above, the shipping cost surprise series has many desirable properties.
Nonetheless, it is only an imperfect measure of the shock of interest because it does not
capture all relevant disruptions in global supply chains and could be measured with error
(Stock and Watson, 2018). Therefore, we do not use it as a direct shock measure but as an
instrument. Provided that the surprise series is correlated with the supply chain shock but
uncorrelated with all other shocks, we can use it to estimate the dynamic causal effects of
a structural supply chain shock.

A challenge in estimating the dynamic causal effects using high-frequency surprises
is the so-called power problem (Nakamura and Steinsson, 2018). Over the impulse hori-

zon, macroeconomic variables are influenced by a myriad of other shocks, while high-

ZWe implement this by first cumulating the surprises on all events days to obtain a daily cumulative
surprise series. Next, we take monthly averages of the daily cumulative surprise series. Finally, we first
difference the series to obtain the monthly average surprise series.
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frequency shipping cost surprises explain only a small share of the fluctuations in ship-
ping rates—resulting in a low signal-to-noise ratio. This makes it difficult to directly es-
timate macroeconomic effects of high-frequency shipping cost surprises using local pro-
jections a la Jorda (2005).

To address this challenge, we rely on VAR techniques for estimation, using the external
instruments approach (Mertens and Ravn, 2013; Stock, 2008; Stock and Watson, 2012).

3.1. Framework

We are interested in modeling global shipping markets and the U.S. economy jointly. Let
y: denote a n x 1 vector of monthly time series. We assume that the dynamics of y; can

be characterized by the following structural vector moving-average representation:
Y = B(L)SS,}, (5)

where g; is a vector of mutually uncorrelated structural shocks driving the economy,
B(L) = 1+ ByL + B,L? + ... is a matrix lag polynomial, and S is the structural impact
matrix.

Assuming that the vector-moving average process (5) is invertible, it admits the fol-
lowing VAR representation:

A(L)yt = SEt = Uy, (6)

where u; is a n x 1 vector of reduced-form innovations with variance-covariance matrix
Var(u;) = Zand A(L) =I— AjL — ... is a matrix lag polynomial. Truncating the VAR to
order p, we can estimate the model using standard techniques and recover an estimate of
A(L).

We want to identify the causal impact of a single shock. Without loss of generality, let
us denote the supply chain shock as the first shock in the VAR, ¢; ;. Our aim is to identify
the structural impact vector s, which corresponds to the first column of S.

External instrument approach. Identification using external instruments works as fol-
lows. Suppose there is an external instrument available, z;. In the application at hand, z;

is the shipping cost surprise series. For z; to be a valid instrument, we need:

Elzie1s] =a #0 (7)
]E[Zt€2:n,t] =0, (8)
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where €1 ; is the supply chain shock and €., ¢ isa (n — 1) x 1 vector consisting of the other
structural shocks. Assumption (7) is the relevance requirement and assumption (8) is the
exogeneity condition. These assumptions identify the structural impact vector s; up to

sign and scale:

]E[ztut]
]E[Ztul,t] '

s1 = 0y x )
provided that E[zu1 ;] # 0. Note that to identify the relative impact effects, we do not
need to assume invertibility. Invertibility is only required for the dynamic effects beyond
impact.’

To facilitate interpretation, we scale the structural impact vector such that the shock
corresponds to a 10 percent increase in shipping costs. We implement the estimator with a
25LS procedure and estimate the coefficients above by regressing 1; on iy ¢ using z; as the
instrument. To conduct inference, we employ a residual-based moving block bootstrap,
as proposed by Jentsch and Lunsford (2019).

Relaxing VAR assumptions. The VAR approach improves precision, allowing for
sharper inference. However, it relies on two potentially restrictive assumptions. The first
is invertibility, meaning that the model incorporates all relevant information needed to
recover the structural shocks of interest. The second pertains to the dynamic VAR struc-
ture, with the key assumption being that a finite-order VAR adequately approximates the
dynamics of the data generating process well. We perform two exercises to assess how
restrictive these assumptions are.

First, we alternatively estimate the responses using the internal instrument approach
(Plagborg-Meller and Wolf, 2019). This approach does not rely on invertibility but instead

assumes that the instrument is orthogonal to leads and lags of the structural shocks:
]E[ZtetJrj] =0, fOI'j 75 0. (10)

Together with the exogeneity and relevance requirement, this identifies the dynamic
causal effects of interest. The approach can be implemented by augmenting the VAR
with the instrument ordered first, y; = (z;, y};)’, and computing the impulse responses to
the first orthogonalized innovation, §; = [chol(X)]. 1/ [chol(X)]1 1.

3To be more precise, the VAR does not have to be fully invertible for identification with external instru-
ments: it suffices if the shock of interest is invertible in combination with a limited lead-lag exogeneity con-
dition (Miranda-Agrippino and Ricco, 2018).
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Second, we estimate the impulse responses to the supply chain VAR shock using local
projections. This approach directly estimates the dynamic responses and does not rely
on the VAR structure, making it less prone to lag truncation bias. Specifically, we first
extract the supply chain shock from the monthly VAR as €1 ; = s; £~ 'u; (for a derivation,
see Stock and Watson, 2018). Next, we estimate the effects for the additional variables of

interest y; using simple local projections:

Yigrn = Oéi,,o +0her + ﬁﬁ,,lyi,tq +...+ ﬁlﬁ,p]/i,t—p + Ciths (11)

where 9;'1 is the effect on variable i at horizon h. Note that while this is a more robust way

to estimate the dynamic responses, it still retains the assumption of (partial) invertibility.

Estimating effects on additional outcome variables. To analyze the effects on a wider
set of outcome variables, we adopt the following approach. For monthly variables, we
augment our baseline VAR by the variable of interest and map out the response as in
(Gertler and Karadi, 2015). For variables at lower frequencies, we rely on the local projec-
tions approach outlined above. To fix ideas, we aggregate the shock ¢; ; by summing over
the respective months before running the local projections at the lower frequency. This
mitigates the problem that high-frequency instruments, when aggregated to the quar-
terly or annual frequency, often lack the power to credibly estimate the effects of interest
(Nakamura and Steinsson, 2018).

Empirical specification. The baseline specification includes 8 variables, consisting of a
global supply chain block containing the real shipping cost (measured using the BDI),
real commodity price index, global shipping capacity, and geopolitical risk index, and
a block for the U.S. economy including the U.S. industrial production, consumer price
index (CPI), three-month treasury yield and real effective exchange rate.* Detailed infor-
mation on the data, including sources, can be found in Appendix A.

We use monthly data spanning the period from 1970 to 2022 and estimate the VAR in
levels, following Sims, Stock, and Watson (1990). Besides the policy indicator, all variables
enter in log-levels. The lag order is set to 12 and the deterministic terms include a constant

and a linear trend.

“Unfortunately, the global shipping capacity data is only available at the annual frequency. We therefore
construct a monthly measure using the Chow-Lin temporal disaggregation method with indicators from
the Quilis (2020) code suite. As the relevant monthly indicators, we include the world industrial production
and oil price.
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4. The Macroeconomic Impact of Supply Chain Shocks

How do supply chain shocks affect the global shipping market and the macroeconomy?
In this section, we discuss the results based on our baseline external instruments VAR

model.

First stage. The main identifying assumption behind the external instruments approach
is that the instrument is correlated with the structural shock of interest but uncorrelated
with all other structural shocks. This assumption is not testable, but we select the disrup-
tions underlying our surprise series carefully to isolate some variation in shipping rates
that is plausibly exogenous.

However, even if the surprise series is exogenous, standard inference will not produce
reliable results when the instrument and the shock are only weakly correlated. In a first
step, it is thus important to test the strength of the instrument. This can be done using
an F-test in the first-stage regression of the shipping cost residual from the VAR on the
instrument (Montiel Olea, Stock, and Watson, 2016). The shipping cost surprise series is
a strong instrument, with a heteroskedasticity-robust F-statistic of 24.44. As this is above
conventional critical values, the instrument appears to be sufficiently strong to conduct

standard inference.

Macroeconomic effects. Figure 5 shows the impulse responses to the identified supply
chain shock, normalized to increase the real shipping cost by 10 percent on impact. In
each panel, the solid black line is the point estimate and the dark and light shaded areas
are 68 and 90 percent confidence bands, respectively.

A disruptive supply chain shock leads to a strong increase in shipping rates that per-
sists for months beyond the initial event. Interestingly, our analysis shows that these
effects last significantly longer than the duration of the shipping disruptions included in
our instrument. The main reason is that a disruptive event, even if only relatively short-
lasting, creates substantial ripple effects throughout the entire shipping market. Ships
must be rerouted, reducing available capacity for scheduled shipments, creating bottle-
necks at alternative ports, and disrupting the tightly coordinated global shipping net-
work. These cascading effects ultimately impact global shipping capacity and pricing for
months beyond the initial disruption.

The rise in shipping costs has important consequences on shipping markets and global
commerce. Commodity prices increase significantly, albeit the peak effect only material-
izes with some lag. The elevated shipping costs create an incentive to expand shipping
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Figure 5: Impulse Responses to a Supply Chain Shock
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capacity, as can be seen from the sluggish increase in world mercantile tonnage. Finally,
the shock has no significant effect on geopolitical risk. This is reassuring as we purpose-
fully abstract from disruptive events related to geopolitical tensions as they may affect
the global economy through channels unrelated to supply chains.

Higher shipping costs also put pressure on the economy. U.S. industrial production
falls significantly and U.S. consumer prices increase persistently. The supply chain shock
has thus stagflationary effects, creating a trade-off for monetary policy. This is reflected
in the response of the short-term interest rate, which tends to increase even though the
response is not statistically significant. Finally, the real effective exchange rate falls, im-
plying a stark depreciation of the dollar.

Quantitatively, a supply chain shock increasing shipping rates by 10 percent leads to
an increase in commodity prices by about 2 percent and an increase in the world mer-
chant fleet by 0.3 percent, at peak. U.S. industrial production falls by around 0.5 percent,
the U.S CPI increases by 0.3 percent, and the real effective exchange rate falls by 0.5 per-
cent. These impacts are considerable and comparable with the economic impacts of other
supply-side shocks, such as commodity price shocks (Baumeister and Hamilton, 2019;

Kénzig, 2021; Kilian, 2009). However, the sluggish increase in commodity prices to-
gether with the delayed increase in the world merchant fleet, suggests that we are not
merely picking up commodity price shocks such as oil price shocks, which are known to

have more immediate energy price impacts.

4.1. Addressing Identification Concerns

In this section, we assess the robustness of our results with respect to some of the key
assumptions underlying our empirical approach. We also discuss potential identification
concerns regarding our instrument.

First, we relax the invertibility requirement, estimating the responses based on
invertibility-robust methods. In addition to the internal instruments approach by
Plagborg-Meller and Wolf (2019), we also show results from an invertibility-robust ex-
ternal instruments approach (Forni, Gambetti, and Ricco, 2022). The results are shown
in Figure 6a. We can see that the responses turn out to be very similar to our baseline
external instruments results.

Second, we assess the extent of lag truncation bias by estimating the dynamic re-
sponses based on local projections. The responses are very similar to our baseline re-
sponses, suggesting that our dynamic VAR structure is flexible enough to capture the

dynamics in shipping markets and the U.S. economy adequately. In the appendix, we
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further show that our results are robust to varying the lag order in our VAR model (see
Figure C.10).

Figure 6: Relaxing VAR Assumptions
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Notes: Impulse responses to a supply chain shock, normalized to increase real shipping costs by 10 percent
on impact. Panel (a) shows the responses under different invertibility-robust approaches. Panel (b) com-
pares the responses estimated based on VARs and local projections. The lines are point estimates and the
dark and light shaded areas are 68 and 90 percent confidence bands, respectively.

We also address a number of additional concerns regarding our identification strat-
egy. A first concern is that collisions at the martitime choke points we consider could be
more likely to occur during periods of economic expansion, potentially introducing some
endogenous variation in our instrument. Reassuringly, our results turn out to be robust
when excluding collision-related events, see Appendix Figure C.1.

Second, disruptions in the Suez Canal may coincide with major geopolitical develop-
ments, raising concerns about potential confounders. In our baseline specification, we
already control for a news-based geopolitical risk index. To further mitigate these con-
cerns, we show that our results are robust to only using events in the Panama Canal, see
Appendix Figure C.4. Including the Suez canal events yields similar point estimates but

helps improves precision.
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Third, we consider the role of major macroeconomic events that could confound our
estimates, such as the oil price shocks of the 1970s, the global financial crisis (GFC), or
the Russian invasion of Ukraine. We confirm that our results are robust to excluding the
1970s and the COVID-19 period, and to controlling explicitly for the GFC using a dummy
variable. None of these large macro shocks appear to drive our results, see Appendix
Figures C.5-C.6 and C.11.

A fourth potential concern is that negative surprises in shipping costs may coincide
with adverse macroeconomic news, confounding their interpretation as supply chain
shocks. To mitigate this concern, we show that results are robust to keeping only pos-
itive shipping disruptions, see Appendix Figure C.7. More broadly, concerns about
background noise—i.e., other confounding developments occurring within the event
window—are alleviated by the robustness of our results to varying the length of the event
window (Appendix Figure C.8).

Finally, we explore how the predictability in our shipping cost surprises affects the
results. We find consistent effects when restricting the sample to the first event in each
sequence—those that are arguably least predictable—as well as when we forgo any at-
tempt to remove predictability altogether, see Appendix Figures C.2 and C.9. This sug-
gests that our findings are not mechanically driven by anticipatory behavior.

4.2. Wider Effects and Propagation Channels

To strengthen our interpretation of a supply chain shock, we study the effects of the shock
on a wider range of macroeconomic variables. We follow the approach outlined in Section
3.1 to compute the impulse responses for additional variables of interest.

Shortages. To corroborate our interpretation of a supply chain shock, we first assess
whether the shock is associated with significant delays in deliveries and shortages. To that
end, we rely on the supplier delivery times indicator from the ISM and the newspaper-
based supply chain shortage indices constructed by Caldara, Iacoviello, and Yu (2024).
From Figure 7, we can see that the supply chain shock leads to a significant increase in
delivery times and supply chain shortages—consistent with the notion that supply chain
disruptions delay relevant shipments and cause shortages down the line. Looking into
the components of the shortage index in Appendix Figure D.1, we find that shortages are

particularly pronounced for industrial materials and energy.
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Figure 7: Effects on Supply Chain Shortages and Delivery Times
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Notes: Impulse responses to a supply chain shock, normalized to increase real shipping costs by 10 percent
on impact. The IRFs are obtained by using our baseline VAR and augmenting it by the variable of interest.
The lines are point estimates and the dark and light shaded areas are 68 and 90 percent confidence bands,
respectively.

Geopolitical risk. Given the significant impact on energy shortages, one may be con-
cerned that our approach largely captures geopolitical oil supply risk. This is why we did
not include any disruptive events in the Strait of Hormuz. In selecting our events, we thus
put great care into excluding disruptions associated with geopolitical developments and
reassuringly, we find that our supply chain shocks have no significant effect on geopolit-
ical risk. We also show that the supply chain shock does not impact other measures of
risk and uncertainty, such as financial uncertainty, economic and trade policy uncertainty,

and crude oil volatility (see Figure D.2 in the appendix).

Producer prices, consumer prices, and expectations. We have seen that supply chain
shocks lead to an increase in commodity and consumer prices. We now examine the com-
ponents of producer and consumer prices to identify which categories are most affected.
In Figure 8a, we analyze the responses of different producer commodity prices, including
farm products, industrial commodities, and energy. All three components show a sig-
nificant increase, with industrial commodities and energy prices demonstrating a more
persistent increase compared to farm products.

In terms of magnitude, energy prices increase the most, with a peak response of
around 2 percent. This increase can be attributed to two factors. First, oil tankers ac-
count for approximately 30 percent of global fleet capacity, and an estimated 76 percent
of world oil trade relies on seaborne routes. Disruptions to shipping introduce delays in
oil transport, thereby disrupting oil supply and driving up prices. Second, vessels must
undertake longer journeys when key maritime chokepoints are affected, leading to an in-
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Figure 8: Impact on Producer and Consumer Prices

(a) Producer Prices
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respectively.
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crease in their fuel demand and consumption. These factors together contribute to the
sustained rise in energy prices.

The increases in the producer prices are passed onto to consumers to a significant ex-
tent. In Figure 8b, we show the responses of major consumer price components, includ-
ing core, nondurable, energy, durable, and service prices, alongside the headline measure
from our baseline specification. The responses of nondurable and energy prices qualita-
tively resemble the response of producer prices and exhibit a more front-loaded increase
compared to the headline measure. The price of services and durables also increase signif-
icantly, with the durable price response displaying substantial persistence. Consequently,
we also document a sluggish but significant rise in core consumer prices.

Supply chain shocks not only increase actual prices, they also translate into higher
inflation expectations. Figure 9 shows the inflation expectations for consumers from the
Michigan survey and for forecasters from the Survey of Professional Forecasters (SPF).
We can see that household inflation expectations increase persistently. Interestingly, the

inflation expectations of professional forecasters do not respond.

Figure 9: Inflation Expectations
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Notes: Impulse responses to a supply chain shock, normalized to increase real shipping costs by 10 percent
on impact. The IRFs are obtained by using our baseline VAR and augmenting it by the variable of interest.
The lines are point estimates and the dark and light shaded areas are 68 and 90 percent confidence bands,
respectively.

Economic activity. Shipping disruptions delay the transport of essential industrial ma-
terials, raising costs for manufacturers. In Figure 10a, we can see that manufacturing
output falls significantly. Interestingly, employment tends to increase in the short run—
possibly pointing to some substitution from other inputs to labor—before falling signifi-
cantly. Real wages tend to decrease but the response is not very precisely estimated.

The substantial impacts on industrial production and manufacturing in particular

translates into more broad based economic effects. Figure 10b shows the responses of
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real GDP, private investment and consumption. A supply chain shock leads to a fall in
output and its components. At peak, real GDP falls by about 0.25 percent, investment by
1 percent, and consumption by 0.2 percent.

Figure 10: Impact on Economic Activity
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Notes: Impulse responses to a supply chain shock, normalized to increase real shipping costs by 10 percent
on impact. The IRFs in Panel (a) are obtained by using our baseline VAR and augmenting it by the variable
of interest. The lines are point estimates and the dark and light shaded areas are 68 and 90 percent confi-
dence bands, respectively. The IRFs in Panel (b) are estimated by local projections (11) on the aggregated
supply chain shock extracted from our baseline external instruments VAR.

Trade. Supply chain shocks also have significant effects on trade. Figure 11 shows that
the shock leads to a significant fall in the terms of trade. The trade balance, however,
improves, consistent with the depreciation of the dollar. In the bottom panels we can
see that these responses are driven by a significant increase in import prices and a fall in

imports.
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Figure 11: Impact on Trade

(a) Terms of Trade and Trade Balance
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4.3. Understanding the Recent Inflationary Episode

We use our identified supply chain shocks to revisit the recent surge in inflation and
assess the quantitative contribution to macroeconomic dynamics during this period. To
this end, we simulate the economy under the sequence of estimated supply chain shocks
while setting all other structural shocks to zero. This exercise provides a counterfactual
estimate of how inflation, commodity prices, and real activity would have evolved in the
absence of other shocks. The results are shown in Figure 12.

We find that supply chain disruptions contribute meaningfully to the variation in in-
flation over the 2020-2022 period. In particular, they help explain a substantial share of
the rise in inflation through 2021, consistent with the timing of widespread logistical bot-
tlenecks and maritime stress. However, the magnitude of their contribution is insufficient
to account for the full extent of the inflation surge. Our results suggest that while supply
chain shocks were an important factor early on, they cannot explain the sharp acceleration
in inflation observed in 2022.

The same pattern is evident in commodity price dynamics. Supply chain disruptions
explain a sizable portion of the fluctuations in commodity prices throughout 2021, reflect-
ing their role in affecting global transportation costs and intermediate input availability.
Yet, they fall short of accounting for the drastic commodity price spikes that followed the
Russian invasion of Ukraine, pointing instead to additional geopolitical or supply-side
factors unrelated to logistics.

Overall, we conclude that supply chain shocks played some role in the recent inflation-
ary episode but cannot account for the peak inflation rates observed in 2022. This finding
is in line with recent evidence highlighting the importance of expansionary demand-side
policies—such as fiscal stimulus and accommodative monetary policy (Giannone and
Primiceri, 2024)—as well as commodity supply shocks, particularly in energy and food
markets (Gagliardone and Gertler, 2023).

That said, supply chain shocks had a more pronounced effect on real economic ac-
tivity. Our analysis shows that they were an important drag on industrial production
throughout 2021, a period marked by intense global logistics disruptions. This suggests
that while supply-side bottlenecks had limited effects on prices, they significantly im-
paired production and contributed to the uneven sectoral recovery in the aftermath of the
pandemic.

Finally, we assess the role of monetary policy in shaping the macroeconomic trans-
mission of supply chain disruptions. To this end, we conduct a counterfactual policy
simulation using the McKay and Wolf (2023) approach, which allows us to evaluate how
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Figure 12: The Role of Supply Chain Shocks in the Recent Inflationary Episode

CPI Inflation
12 T T

--------- CPI Inflation
10 Supply Chain Shock Counterfactual

1
Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022

-2

Commodity Prices
T T

200 F ‘ i
--------- Commodity Prices

Supply Chain Shock Counterfactual

150 -

100

50

0

-50

-100

-150 !
Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022

Industrial Production
T T T

50 s Industrial Production i

Supply Chain Shock Counterfactual

1
Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022

-50

Notes: Counterfactual evolution of CPI inflation, commodity prices inflation and industrial production
growth when turning off all other shocks but supply chain shocks from mid-2020 to 2022 (black line),
together with the actual evolution of these variables (dashed red line). The dark and light shaded areas are
68 and 90 percent confidence bands, respectively.

30



supply chain shocks propagate under alternative monetary policy responses. The idea is
to leverage estimated impulse responses to monetary policy shocks to impose a counter-
factual monetary response to supply chain shocks. By only using a combination of shocks
on impact, the contemplated counterfactual policy is incorporated in private-sector ex-
pectations ex-ante and thus robust to the Lucas critique. To implement the approach, we
rely on the identified monetary policy shocks by Bauer and Swanson (2023) and Miranda-
Agrippino and Ricco (2021).

This exercise allows us to quantify the potential trade-offs associated with a more
aggressive monetary tightening aimed at offsetting the inflationary pressures induced by
supply chain disruptions. Specifically, it sheds light on how costly it would be for the
central bank to prevent the inflationary impacts of supply chain shocks by responding

preemptively and forcefully to signals of supply chain stress.

Figure 13: Monetary Policy Counterfactuals
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Notes: Responses of industrial production, CPI and the short-term interest rate from our baseline model
(black line) against counterfactual responses when monetary policy aims to stabilize prices (dashed red
line). The dark and light shaded areas are 68 and 90 percent confidence bands, respectively.

The results, shown in Figure 13, highlight a key trade-off. A more aggressive monetary
response can indeed stabilize prices following a supply chain shock by curbing inflation-
ary pressures through substantial tightening of interest rates. However, this comes at
substantial cost: the counterfactual path implies a much sharper contraction in industrial
production, falling by almost 1 percent at peak.

Overall, these findings illustrate the complicated trade-offs monetary policy is con-
fronted with in the face of pervasive supply chain pressures.
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5. Implications for Trade and Network Models

Our reduced-form evidence on supply chain shocks provides new empirical targets to
discipline structural trade and network models. We discuss two applications: elasticities
of substitution across production factors and trade costs.

First, our reduced-form estimates offer an empirical foundation for investigating the
role of trade costs in shaping the international transmission of supply chain shocks. Our
plausibly exogenous shipping disruptions can serve as a natural proxy for changes in
iceberg trade costs. Extending our analysis to cross-country outcomes allows to trace
how input prices and quantities respond across national borders, offering reduced-form
evidence on the elasticity of substitution between domestic and foreign inputs. Such ev-
idence helps shed light on how trade costs shape sourcing decisions and the reallocation
of trade flows in response to global disruptions. Moreover, heterogeneity in pass-through
magnitudes across countries can inform variation in underlying trade frictions, such as
differences in institutional quality, port efficiency, or contract structure.

Second, we can extend our approach to study changes in input prices and input use
across different sectors in response to a supply chain shock. Based on these responses,
we can estimate elasticities of substitution across production inputs in a structural pro-
duction network setting. To fix ideas, consider a CES production framework in which
sectoral output is generated using capital, labor, and a composite of intermediate inputs.

In particular, let output in sector i at time ¢ be given by:

5%,1 -1\ &1 1oni\ AT
Y, = [A,-tK;.’;L};“} "+ (ByMy) G , with M; = ng.’Yijfi ,
j

where Mj; is a CES aggregator of intermediate goods sourced from other sectors. The
parameter (; governs the elasticity of substitution between the value-added composite
and intermediates, while 7; governs substitution across intermediate suppliers.

By estimating how relative input prices and quantities change in response to a sup-
ply chain shock, we can obtain reduced-form estimates of substitution elasticities. For

instance, the elasticity between labor and intermediates can be identified from:

din (Lit/Mit)

%= 3 (P W)

where PM is the price of intermediates and W; is the wage. Since our identification relies
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on plausibly exogenous variation in global shipping costs, these elasticities are not biased
by endogenous input price movements.

These elasticities can serve as useful targets to discipline quantitative trade and net-
work models. We are currently working on estimating them using our framework and
plan to provide these estimates in the next iteration of the draft.

6. Conclusion

In this paper, we provide new evidence on the macroeconomic implications of sup-
ply chain disruptions, focusing on the critical role of maritime trade choke points. Ex-
ploiting plausibly exogenous disruptive events at these bottlenecks and leveraging high-
frequency financial data, we identify structural supply chain shocks and trace their cas-
cading effects on the global economy. Our findings show that disruptive supply chain
shocks have pervasive economic effects: they persitently raise shipping costs, commod-
ity prices, and consumer prices, while depressing output and employment. These stagfla-
tionary dynamics pose complex challenges for the conduct of monetary policy.

More broadly, our results highlight the vulnerability of global supply chains and their
substantial influence on macroeconomic outcomes. We demonstrate that supply chain
shocks contributed meaningfully to the inflationary surge of 2021-22. As climate change,
extreme weather, and geopolitical tensions increasingly disrupt global logistics, under-
standing the role of supply chain shocks will be ever more important for forecasting,
policy design, and economic resilience.
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A. Data

A.1. Dataset on Events in Maritime Chokepoints

In this Appendix, we provide additional information on the dataset of events that dis-
rupted shipping traffic in critical maritime chokepoints.

To collect the events, we rely on two sources. First, for both canals, we use news-
paper archives accessed through Dow Jones” Factiva. While news regarding disruptions
are widely reported across mainstream and maritime-specific newspapers, we primar-
ily rely on leading news agencies including Reuters, The Associated Press (AP), and
Agence France-Presse (AFP). Second, for the Panama Canal, we also rely on the “Advi-
sory to Shipping” notices issued on the Panama Canal Authority’s (ACP) official website:
https:/ /pancanal.com/en/maritime-services/advisory-to-shipping/, that include draft
restrictions.

Our comprehensive dataset identifies 139 events that disrupted shipping traffic be-
tween 1970 and 2022, including 94 events in the Suez Canal and 45 events in the Panama
Canal.! For each event, we collect detailed information on the reporting of the event, the

date of the event, the type of the event, and the severity of the event.

A.2. Macro Data

In Table A.1, we provide information on the macroeconomic data used in the baseline
specification, including the data source and sample coverage.
The transformed series used in the baseline specification are depicted in Figure A.1.

B. Diagnostics of the Surprise Series

As discussed in the paper, we perform a number of additional checks to ascertain the
validity of the surprise series. In this section, we investigate the autocorrelation and fore-
castability of the surprise series, as well as its correlation with other shocks from the
literature.

In Figure B.1, we present the autocorrelation function. We find no evidence that the
surprise series is serially correlated. The p-value for the Q-statistic that all autocorrela-

tions are zero is 0.99.

10On two specific dates, the Suez Canal and Panama Canal both experienced incidents that disrupted
shipping traffic.
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Table A.1: Data Description, Sources, and Coverage

Variable Description Source Trans.

Instrument

BDIY Baltic dry index (monthly average), extended using Bloomberg 100 x Alog
Hamilton (2021)

Baseline

BDIY Baltic dry index (monthly average), extended using Bloomberg 100 x log
Hamilton (2021)

BCOM Bloomberg commodity index (monthly average) Bloomberg 100 x log

TONNAGE  World merchant fleet (thousands of dead-weight UNCTADStat 100 x log
tons; weight measure of a vessel’s carrying capacity,
including cargo, fuel, and stores), extended using
Jacks and Stuermer (2021)

GPR Geopolitical risk index from Caldara and lacoviello GPR index 100 x log
(2022) webpage

INDPRO U.S. industrial production: total index (2017 = 100; FRED 100 x log
seasonally adjusted)

PCEPI Personal consumption expenditures: chain-type FRED 100 x log
price index (2017 = 100; seasonally adjusted)

SPX S&P 500 index (monthly average) Bloomberg 100 x log

TB3MS 3-Month treasury bill secondary market rate, FRED Level
discount basis

RNUSBIS Real narrow effective exchange rate for United States FRED Level

Additional Variables

SHORTAGE  Shortage index from Caldara, lacoviello, and Yu Shortage index 100 x log
(2024) webpage

DELIVERIES = Supplier delivery times, ISM Bloomberg 100 x log
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Figure A.1: Transformed Data Series
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Figure B.1: Autocorrelation Function
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In Table B.1, we present the results of a number of Granger causality tests. We find
little evidence that macroeconomic or financial variables have any power in forecasting
the surprise series. For all variables considered, the p-values for the Granger causality
test are far above conventional significance levels, with the joint test having a p-value of
0.83. The only exception is shipping rates, which individually helps predict the surprises
somewhat. However, removing this predictability by purging our surprises by shipping
rates yields very similar results.

42



Table B.1: Granger Causality Tests

Variable p-value
Instrument 0.9906
Shipping rates 0.2474
Commodity prices 0.8855
World mercantile tonnage 0.8975
Geopolitical risk 0.7192
U.S. industrial production 0.5380
U.S. CPI 0.5932
Short rate 0.9182
Real effective exchange rate  0.5079
Oil price 0.6678
Shortage index 0.6106
Joint 0.8571

Notes: This table shows the p-values of a series of Granger causality tests of the shipping costs surprise
series using a selection of macroeconomic and financial variables. To be able to conduct standard inference,
the series are made stationary by taking first differences where necessary. The lag order is set to 6 and in
terms of deterministics, only a constant term is included.

Finally, in Table B.2 we examine how the shipping costs surprise series correlated with
other shocks from the literature. The surprise series is uncorrelated with other structural
shock measures from the literature, including oil, productivity, news, monetary policy,

uncertainty, financial, and fiscal policy shocks.
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Table B.2: Correlation with Other Shock Measures

Shock Source 0 p-value n Sample

Panel A: Oil shocks

Oil price Hamilton, 2003 0.03 0.56 396 1985M01-2017M12

Oil supply Kilian, 2008 -0.10 0.12 237 1985M01-2004M09
Caldara, Cavallo, and Iacoviello, 2019  -0.06 0.29 372  1985M01-2015M12
Baumeister and Hamilton, 2019 0.00 0.95 456 1985M01-2022M12
Kilian, 2009 -0.08 0.17 276 1985M01-2007M12

Global demand 0.10 0.11 276  1985M01-2007M12

Oil-specific demand -0.03 0.60 276 1985M01-2007M12

Oil supply news Kénzig, 2021 -0.01 0.83 456  1985M01-2022M12

Panel B: Productivity Shocks

Productivity Basu, Fernald, and Kimball, 2006 -0.04 0.71 108 1985Q1-20110Q4
Smets and Wouters, 2007 -0.05 0.63 80  1985Q1-2004Q4

Panel C: News shocks

News Barsky and Sims, 2011 -0.20 0.06 91 1985Q1-2007Q3
Kurmann and Otrok, 2013 0.15 0.19 82  1985Q1-2005Q2
Beaudry and Portier, 2014 0.01 0.90 111 1985Q1-2012Q3

Panel D: Monetary policy

Monetary policy Bauer and Swanson, 2023 0.01 0.89 383 1988M02-2019M12
Gertler and Karadi, 2015 0.01 0.87 324  1990M01-2016M12
Romer and Romer, 2004 -0.01 0.94 144  1985M01-1996M12
Smets and Wouters, 2007 -0.09 0.45 80  1985Q1-200404

Panel E: Uncertainty shocks

Uncertainty Bloom, 2009 -0.04 0.39 396 1985M01-2017M12
Baker, Bloom, and Davis, 2016 -0.05 0.30 390 1985M07-2017M12

Panel F: Financial shocks

Financial Gilchrist and Zakrajsek, 2012 -0.04 0.48 372 1985M01-2015M12
Bassett et al., 2014 -0.08 0.48 76  1992Q1-2010Q4

Panel G: Fiscal policy shocks

Fiscal policy Romer and Romer, 2010 -0.15 0.17 92 1985Q1-2007Q4
Ramey, 2011 -0.08 0.41 104  1985Q1-20100Q4
Fisher and Peters, 2010 0.00 0.97 96  1985Q1-2008Q4

Notes: This table shows the correlation of the shipping cost surprise series with a wide range of structural
shock measures from the literature. p is the Pearson correlation coefficient, the p-value corresponds to the
test whether the correlation is different from zero, and 7 is the sample size. When the shock measure is only
available at the quarterly frequency, the surprise series is aggregated by summing across months.

C. Sensitivity

Event selection. Figure C.1 shows the responses using an instrument that excludes col-

lisions.
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Figure C.1: Sensitivity With Respect to Excluding Collisions

Shipping rates Commodity prices
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Notes: Impulse responses to a supply chain shock using an instrument that excludes collisions. The lines are
point estimates and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure C.2 shows the responses using an instrument that relies on a more restrictive
set of events or draft restrictions.
Figure C.3 shows the responses from a jackknife exercise in which one value of the

surprise series is set to zero at a time.

Canals. Figure C.4 shows the responses using an instrument that includes events in the
Panama canal or in the Suez canal alone.

Sample. Figure C.5 presents responses based on a sample excluding the 1970s, while
Figure C.6 presents responses based on a sample excluding the Covid-19 period.

Negative surprises. Figure C.7 shows the responses using an instrument that censors

negative surprises to zero.

Event window. Figure C.8 shows the responses using an instrument with surprises

computed over a longer event window.
Predictability. Figure C.9 shows the responses using the raw instrument.

Model specification. Figures C.10 and C.11 show the results of sensitivity checks with
respect to additional specification choices, including the lag order and deterministics.

D. Additional Results

Shortages. Figure 7a shows the responses of the components of the shortage index con-
structed by Caldara, lacoviello, and Yu (2024) to a shipping cost shock.

Uncertainty. Figure 7a shows the responses of various measures of uncertainty to a ship-

ping cost shock.

Industrial production. Figure D.3 shows the response of industrial production cate-
gories by market group to a shipping cost shock.
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Figure C.2: Sensitivity With Respect to Event Selection

Shipping rates Commodity prices
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Baseline
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Notes: Impulse responses to a supply chain shock using an instrument that relies on a more restrictive set
of events or draft restrictions. The lines are point estimates and the dark and light shaded areas are 68 and
90 percent confidence bands, respectively.
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Figure C.3: Jackknife Exercise
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Notes: Impulse responses to a supply chain shock from the jackknife exercise. The lines are point estimates
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure C.4: Sensitivity With Respect to Canals
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Notes: Impulse responses to a supply chain shock using an instrument that includes events in the Panama
canal or in the Suez canal alone. The lines are point estimates and the dark and light shaded areas are 68
and 90 percent confidence bands, respectively.
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Figure C.5: Excluding the 1970s
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Notes: Impulse responses to a supply chain shock based on a sample excluding the 1970s. The lines are
point estimates and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure C.6: Excluding the Covid-19 period
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Notes: Impulse responses to a Impulse responses to a supply chain shock based on a sample excluding the

Covid-19 period. The lines are point estimates and the dark and light shaded areas are 68 and 90 percent
confidence bands, respectively.
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Figure C.7: Sensitivity With Respect to Negative Surprises
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Notes: Impulse responses to a supply chain shock using an instrument that censors negative surprises to

zero. The lines are point estimates and the dark and light shaded areas are 68 and 90 percent confidence

bands, respectively.
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Figure C.8: Sensitivity With Respect to Event Window
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Notes: Impulse responses to a supply chain shock using an instrument with surprises computed over a
longer event window. The lines are point estimates and the dark and light shaded areas are 68 and 90
percent confidence bands, respectively.
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Figure C.9: Raw Surprises
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Notes: Impulse responses to a supply chain shock using the raw instrument. The lines are point estimates
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure C.10: Sensitivity With Respect to Lag Order
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Notes: Impulse responses to a shipping cost shock with varying lag order. The lines are the point estimate
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure C.11: Sensitivity With Respect to Deterministics

Shipping rates Commodity prices

15

Baseline

— — No linear trend

— - —- Control for GFC dummy
------- Control for Covid dummy

10

=X
5F
0 I ; ‘ ‘ ‘ ‘
0 10 20 30 40 0 10 20 30 40
0.6 World mercantile tonnage Geopolitical risk

0 10 20 30 40

U.S. industrial production U.S. CPI

0.5 . ‘ ‘ 0.6 '

0

S

-0.5

1 ‘ ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 0 10 20 30 40
Short rate Real effective exchange rate

0.2 ! 0 ; ‘ : —

0 lb 26 3‘0 40 0 1‘0 26 3‘0 40
Months Months
Notes: Impulse responses to a shipping cost shock using a model that excludes the linear trend and controls
for the global financial crisis (GFC) and Covid-19 using a dummy variable. The lines are the point estimate
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.

56



Figure D.1: Impacts on Shortage Measures
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Notes: Impulse responses to a shipping cost shock, normalized to increase real shipping costs by 10 percent
on impact. The IRFs are obtained by using our baseline VAR and augmenting it by the variable of interest.
The lines are point estimates and the dark and light shaded areas are 68 and 90 percent confidence bands,

respectively.

Figure D.2: Impacts on Other Uncertainty and Risk Measures
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Notes: Impulse responses to a shipping cost shock, normalized to increase real shipping costs by 10 percent
on impact. The IRFs are obtained by using our baseline VAR and augmenting it by the variable of interest.
The lines are point estimates and the dark and light shaded areas are 68 and 90 percent confidence bands,

respectively.
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Figure D.3: Impact on Industrial Production
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Notes: Impulse responses to a shipping cost shock, normalized to increase real shipping costs by 10 percent
on impact. The IRFs are obtained by using our baseline VAR and augmenting it by the variable of interest.
The lines are point estimates and the dark and light shaded areas are 68 and 90 percent confidence bands,
respectively.
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