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Introduction

e (Climate change is often portrayed as an existential threat

® Yet empirical estimates imply small, 1-3% GDP loss per 1°C
(Nordhaus 1992, Dell et al. 2012, Burke et al. 2015, Nath et al. 2023)

e All focus on within-country, local temperature panel variation
Questions
® Are the economic consequences of climate change truly so small?

¢ Or is local temperature an incomplete representation of climate change?
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Use natural climate variability and time series variation

1°C global temperature implies a 12% decline in world GDP vs. 1% for local temperature

® Reconcile global and local temperature estimates

>
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Global temperature shocks predict strong rise in damaging extreme events

Local temperature shocks do not

® Quantify the Social Cost of Carbon & the welfare cost of climate change

» Literature

>

>
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Use reduced-form impacts to estimate damage functions in NGM (=DICE)
SCC = §1,056/tCO2 for global temperature vs. $151/tCO2 for local temperature
Adding 2°C to 2024 temperature by 2100 implies a 31% welfare loss in permanent consumption

Imply that unilateral decarbonization policy is optimal
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Global Temperature and
Economic Growth



Global temperature and economic growth

Global Average Temperature World Real GDP
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Notes: Global avg temperature (incl. sea surface) from NOAA, world real GDP from PWT
® Global temperature and world GDP both trending up over our sample
® May bias estimated effects of temperature on output
® Focus on temperature shocks
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Measuring temperature shocks
® Use approach by Hamilton (2018)
e Estimate transient component in temperature as forecast error
f_»'l\hk =Tern— Bo+BiTe+ .o+ Boy1 Teep),

® What drives variation around temperature trend?
> Solar cycles & volcanic eruptions

> Internal climate variability

® Choose h = 2 (and p=2) to allow for persistent climatic phenomena
> e.g. El Nifio events

» Results robust to alternative choices
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Global temperature shocks

;%z V M/\AM/\A/\V/\/\
AURRR

1960 1980 2000 2020

Year




Estimating the effects of temperature shocks

e Estimate dynamic causal effects to global T shocks using local projections (Jorda 2005)

Yerh — Ye—1 = ap + On T + X8, + €t

where

v

ye is (log) world real GDP per capita

v

T:'* is the temperature shock

v

0 is the dynamic causal effect at horizon h

» Xx; is a vector of controls
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The effects of global temperature shocks

World Real GDP

10

Percent

-10

-20
L

o
N
'S
[e)}
[*3)

10
Years

Notes: Point estimate with 68 and 90% confidence bands based
on robust standard errors

/27



The effects of global temperature shocks

World Real GDP

10

Percent

-10

-20
L

o
N
'S
[e)}
[*3)

10
Years

Notes: Point estimate with 68 and 90% confidence bands based
on robust standard errors

e Global temperature shocks

» Significant & persistent impact
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The effects of global temperature shocks
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e Global temperature shocks

» Significant & persistent impact

e After a 1°C shock
» GDP per capita falls by 2% on impact
» Effect builds up to >10% after 6 years

> Impact persists even 10 years out
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Threats to identification

® Confounders: temperature shocks coincide with adverse economic shocks
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Threats to identification

® Confounders: temperature shocks coincide with adverse economic shocks
» Control for global economic and financial variables
» Control for large global shocks using dummies (e.g. oil price shocks in 70s or Great Recession)

> Results survive in panel where we can do much more ...

® Reverse causality: economic activity leads to emissions and changes in temperature
» Reverse causality concerns attenuate economic effects of temperature shocks
> Emissions translate into temperature with a substantial lag (max warming after 10 years)
> Annual emissions fluctuations imply negligible temperature variations vs. typical temperature shocks

> Granger causality tests

» Temperature shocks not forecastable by past macro variables
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Reverse causality

= ® Formally accounting for reverse causality
produces virtually identical results
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on Driscoll-Kraay SE
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Reverse causality

= ® Formally accounting for reverse causality
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Temperature Shocks in the
Panel of Countries



A new climate-economy panel

® New climate-economy panel dataset covering 173 countries

» Main sample starts in 1960; for some countries we can go back until 1900

® Economic data from PWT & JST Macrohistory database
> Real GDP pc, population, capital, investment, productivity, ...

® Temperature data from NOAA and Berkeley earth

> Allows for timely updates

e Extreme weather data from ISIMIP

» Use gridded data from to construct country-level measures
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Estimating the effects of temperature shocks in the panel

e Estimate the dynamic causal effects to temperature shocks in the panel

® Use panel local projections (Jorda et al 2020)

Yierh = Yie—1 = Qg + On TN + X084 Xi Vi + i t1h,
where
> yit is (log) real GDP per capita in country i
» T is the temperature shock
> 0y is the dynamic causal effect at horizon h

> X is a vector of global controls, x;; are country controls

e Can estimate responses to global and local temperature shocks
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Global temperature shocks in the panel
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Global temperature shocks in the panel

Real GDP

e Global temperature shocks

» Substantial impact in panel
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Global temperature shocks in the panel
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Notes: Point estimate with 68 and 90% confidence bands based
on Driscoll-Kraay SE

e Global temperature shocks
» Substantial impact in panel

» GDP per capita falls by over 10%

e Effect in panel = effect in time series

12/27



Robustness

e Power of panel allows us to do a lot of sensitivity

® Results robust to
1. Construction of temperature shock *More
2. Selection of controls * Mere
3. Sample period * More

4. No evidence for pre-trends * Mo
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Global vs. local temperature shocks

How do global temperature shocks compare to local, country-level temperature shocks?

> Virtually all previous work uses local temperature shocks

® To maximize comparability, estimate responses using same specification

Just replace global shock with local temperature shock

Alternatively, can also control for time FE

hock /
Yitrh = Yit—1 = Qip + 0ep + On T7E" +X; oYy + €itioh,
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Global vs. local temperature shocks

e Construct temperature shocks using same Hamilton filter

e Use population-weighted country-level temperature

United States
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® Only weakly correlated with global temperature shocks

South Africa

05

AL A f\‘%lbr/\/\ AA/\

-0.5

VWN\\/ VU\U \[W ¥

1960 1980 2000 2020

Year

15 /27



Impact of global vs. local temperature shocks
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Impact of global vs. local temperature shocks
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e Effect of local T shocks
> Is in line with previous literature

> Much smaller than global T shocks

e With time FE: no difference > More

» Nature of T shock rather than controls
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e Effect of local T shocks
> Is in line with previous literature

> Much smaller than global T shocks

e With time FE: no difference > More

» Nature of T shock rather than controls
® For global T shocks > More

» Similar results for correlated T shocks
even with time FE
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Reconciling cross-sectional & time-series evidence

e What can explain the large difference between local and global shocks?

e Conjecture: global average temperature better proxy of climate change
> Climate change materializes as a rise in global mean temperature
» Change in global temperature affects the Earth’s climate system as a whole

> Influences the frequency, intensity, and distribution of extreme weather events

® |s this borne out in the data?

» Study responses on extreme climatic events from ISIMIP
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Reconciling cross-sectional & time-series evidence
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Reconciling cross-sectional & time-series evidence

Local temperature Extreme heat
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Mechanisms

® Which elements of GDP respond? * Mo
» Capital stock and investment fall substantially with some lag

» Productivity falls immediately and persistently

e Consistent with both capital and productivity damages
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Heterogeneity

® So far focus on aggregate/average effect of global T shocks
® How are effects distributed across countries?

® Run local projections by country characteristics/different regions * veore
» Southeast Asia and Sub-Saharan Africa most adversely affected
» But substantial negative effects even in Europe & North America
> Positive effects in Central & East Asia

> Warmer countries are more adversely affected
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A Global Model of Climate Change



A Neoclassical growth model

® Households solve
Vo(Ko) = {gn?(x} / e PtU(C,)dt subject to  C;+ Ky = w; + Ky
t,Rert JO
Ko given

® Firms solve

max Z,(KP)*(LO)' = (re + A)KD = wiL?
® Prices ry, w; clear markets: K; = KtD and 1 = LtD
e Temperature shocks T, affect productivity and depreciation with a lag

t t
Z, = Zyexp (/ (s 'f't_sds> A, = Ngexp (/ ds 'i't_sds)
0 0
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Estimating damage functions

Use reduced-form GDP and capital IRFs to identify damage functions g, (s
® Leverage identification result: for small temperature shocks

Ve = 20+ ake ke = Ke(2) + /OOO JesDods
for known J; s, Kt(2)

® Recover sequence of prod. and dep. shocks Z;, A, following T shock in data

Then estimate 5, s as innovations to 2, A,
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Damage functions from global temperature shocks
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Damage functions from global temperature shocks

® Model matches output and capital responses reasonably well

¢ Global transitory temperature shocks imply large productivity and capital depreciation damages
» -2.5% productivity and +0.3p.p. capital depreciation at peak

» Persistent effects on productivity and capital depreciation despite shock being transitory

® Then repeat estimation with local temperature shocks *» Mo
» Find much smaller productivity and capital depreciation damages
» -0.5% productivity and only short-lived capital depreciation

» Consistent with smaller economic impact estimated in data

e For both shocks we include capital depreciation damages

> Previous literature focuses on productivity damages
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Climate change and the Social Cost of Carbon

® With estimated damage functions can evaluate climate change and SCC counterfactuals

¢ Climate change: excess global temperature {ft}tzo
» Use 2024 as t = 0 and add 2°C by 2100 so 3°C above pre-industrial levels

» Conservative relative to business-as-usual (IPCC)

® SCC: $ losses associated with emitting 1 ton of CO2
» Consider excess global temperature { 77} >0 induced by a 1 ton of CO2 pulse (Joos et al. 2013)

» SCC = equivalent variation to make households indifferent between steady-state and the CO2 pulse

25 /27



The Welfare Impact of
Climate Change



The impact of climate change
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The impact of climate change
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¢ Global shocks = large impacts
» BAU 2050 C, Y | 30%
> 31% welfare loss
» SCC = $1,056/tCO2
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The impact of climate change
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Global shocks = large impacts
» BAU 2050 C, Y | 30%
> 31% welfare loss
» SCC = $1,056/tCO2

Local shocks = small impacts

» 4% welfare loss
» SCC = $151/tCO2

> In line with previous findings
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The impact of climate change
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¢ Global shocks = large impacts
» BAU 2050 C, Y | 30%
> 31% welfare loss
» SCC = $1,056/tCO2

® |ocal shocks = small impacts
» 4% welfare loss
» SCC = $151/tC0O2
> In line with previous findings

e Difference driven by
» Global vs. local shocks

> Not cap. dep. damages
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Sensitivity

(a) Welfare (cons. eq., %)

(c) Welfare (cons. eq., %)
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Sensitivity

(a) Welfare (cons. eq., %)

(c) Welfare (cons. eq., %)

-60
mmm Global T', prod. and dep.
80 4uus Global T, prod. only -80
== Local T, prod. only
-100 -100
o QY L ¥ N o 1.5 2 3 4 5 6
NN Q N N N
V70 o o © o 2100 temperature vs. pre-industral (C)
Discount rate (p)
b) SCC ($ d) SCC ($
3000 ® & 3000 @ &
.
.
2500+ 2500
)
2000] % 2000
.
Y
1500 " 1500
1000 1000lllllllllllllllllllllllll
500 500
. S - . - - = = = = =
N 1.5 2 3 4 5
Q_QQC‘)Q NS QQ‘L “_Q‘b QY Q_Q‘o 5

Discount rate (p)

5 6
2100 temperature vs. pre-industral (C)

e Overall magnitudes robust w.r.t.

» Warming scenario

» Discount rate

e Still substantial effects under
» Moderate warming of 2°C

» Large discount rate of 4%

® For plausible pessimistic cases

» Welfare loss > 40%
» SCC > $3,000/tCO2
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Policy Implications

® Most large-scale decarbonization policies in the IRA cost $27-95/tCO2
» Below typical global traditional SCC estimates, e.g. $151/tCO2 with local temperature shocks
> But higher than US-only Domestic Cost of Carbon (DCC), e.g. $30/tCO2 with local T shocks

> So unilateral policy likely to face substantial opposition in long-run

e Qur estimates with global temperature shocks entirely reverse this trade-off
» Even the US-only DCC is $211/tCO2
> Much higher than the cost of decarbonization
> So unilateral decarbonization policy is actually optimal

» Makes widespread decarbonization much more likely and sustainable
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Conclusion

® We evaluate the macroeconomic impact of climate change

Propose focus on more direct proxy of climate change: global temperature

Global temperature shocks have much larger effects than local temperature shocks

> Because they lead to substantial increase in extreme climatic events

e Use evidence to discipline simple NGM at core of IAMs

Implied SCC of $1,056/tCO2 and welfare cost of 31%
» Six times larger than previous estimates
» Magnitudes are comparable to damages from fighting a war permanently

> Imply that unilateral decarbonization policy is optimal
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Thank you!

For questions or comments: dkaenzig@northwestern.edu
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Forecastablity

® Temperature shocks not forecastable by past macro and financial variables

> even true when allowing for long lags

Table: Granger-causality tests

Variable p-value
Real GDP 0.494
Population 0.801
Brent price 0.756
Commodity price index  0.664
Treasury 1Y 0.830

Overall 0.825

» Back 31/27



Construction of temperature shock
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Selection of controls
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Sample period

(a) Short sample: 1985-2019 (b) Long sample: 1900-2019
2 S
o
— o 4
- -
g < =1
S g 2
5 5
~ 2 ~
&
g \
(=3
j=1 3}
@ T T T r !
0 2 4 6 8
Years Years
» Back

34 /27



Pre-trends
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Time fixed effects
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Correlated temperature shocks
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Mechanisms
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Heterogeneity
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Heterogeneity
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Percent

20

10

-20 -1

-30

(a) By average temperature

— Avg. temperature below 10°C
—— Avg. temperature between 10 and 20°C
—— Avg. temperature above 20°C

10

Percent

10

-10

-20

-30

(b) By income per capita

—— Top income countries
—— Middle income countries

—— Lower income countries

2 4 6 8 10

40/27



Damage functions from local temperature shocks
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