
Climate Damages and Decarbonization:
An Updated Perspective on Benefits and Costs

IBRN Climate workshop
Diego R. Känzig

Northwestern University, CEPR & NBER

October 2025



The state of climate-macro



The state of climate-macro
• The dominant approach to climate-macro has been structural
• Write down integrated assessment/computable general equilibrium models to studyclimate change and policy

– Extremely important research agenda ⇒ how to jointly model climate & economy
– Culminated in Nordhaus’ Nobel Prize

• Key challenge: have to discipline key model parameters/objects
– Climate damage function
– Abatement cost function
– Elasticity of substitution between inputs (different energy inputs, capital, labor)
– . . .
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The state of climate-macro
• Influential literature has exploited variation at the micro level

– Facilities, firms, regions, countries, . . .
– Credible identification, absorbing potential endogeneity using fixed effects
– Great to study heterogeneity / speak to certain mechanisms

• But estimates micro-elasticities/relative effects ̸= macro-elasticities/aggregate effects
⇒ Missing intercept problem, abstracts from GE effects and spillovers

• In macro: Key object of interest are macro-elasticities
• How do we arrive at these?
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Bridging climate-micro and macro
• In short: need more structure...
• Dominant approach: write down structural model to map micro to macro effects

– Either fully specified model or with sufficient statistics estimable from the data
– But relies on stringent structural assumptions

• Alternative: exploit time-series variation to estimate aggregate effect
– This approach has a lot of promise, especially in the climate/environment context
– Why? Identifying macro shocks is difficult since policy and economy interact endogenously
– Climate shocks are often more exogenous, making them easier to identify
– Relies on much weaker structural assumptions

• This talk: showcase time-series approach to revisit cost-benefit analysis
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Outline of this talk

1. Estimating climate damages
2. Estimating abatement costs
3. Updating cost-benefit analyses
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Estimating climate damages



Estimating climate damages: Bilal & Känzig (2025)
• Climate change is often portrayed as having major economic consequences
• Yet empirical estimates imply moderate 1-3% GDP loss per 1°C

(Nordhaus 1992, Dell et al. 2012, Burke et al. 2015, Nath et al. 2023, Kotz et al. 2024)
• All focus on within-country, local temperature panel variation
Questions
• Are the economic consequences of climate change truly so small?
• Or is local temperature a partial representation of climate change?
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Estimating climate damages: Bilal & Känzig (2025)

• We propose new focus on global temperature
• Key summary statistic of climate change, used by the IPCC
• Includes ocean surface temperature!
• Lots of time-series variation in global temperature unrelated to economic activity

– Natural climate variability: El Niño, solar cycles, volcanic eruptions, . . .
• What do we get from this approach?
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Global temperature and economic growth
(a) Global temperature
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Notes: Global average temperature (including sea surface) from Berkeley earth, world real GDP from PWT
• Global temperature and world GDP both trending up over our sample
• May bias estimated effects of temperature on output
• Focus on temperature shocks 7



Measuring temperature shocks and tracing their effects
• Use approach by Hamilton (2018) as in Nath et al. (2024) for local temperature
• Estimate innovation in global temperature process as forecast error

T shock
t = Tt − (β̂0 + β̂1Tt−q + . . .+ β̂p+1Tt−q−p),

– Driven by solar cycles, volcanic eruptions, and internal climate variability (e.g. El Niño)
– Virtually identical results if use HP filter, etc.

• Estimate effects of global temperature shocks using local projections (Jordà et al. 2020)
yi ,t+h − yi ,t−1 = αi ,h + θhT shock

t + x′tβh + x′i ,tγh + εi ,t+h

– yi,t is real GDP per capita of country i

– xt , xi,t are vectors of global and country-level controls 8



Global temperature shocks
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The impact of a 1°C global temperature shock
(a) Global temperature
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• Estimate effect of permanent 1°C rise as cumulative response ratio
• Corresponds to a 20% long-run reduction in world GDP per capita 10



Four identification concerns
1. Omitted variable bias

– Temperature shocks may happen to coincide with adverse global economic shocks
2. Reverse causality

– Economic activity may lead to emissions and changes in temperature
3. External validity

– Estimates stable over time and by source of global temperature variation
4. Regional omitted variables

– Stable regardless of regional & country controls and weighting, no discernable pre-trends
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Accounting for concern #1: Omitted variable bias
(a) Sensitivity with respect to controls
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(b) Scatter plot at h = 6
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Accounting for concern #1: Omitted variable bias
• Omitted variable bias more acute in shorter sample
• Revisit evidence in longer sample: 43 countries, 1860-2019
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Accounting for concern #1: Omitted variable bias
(a) Global temperature
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Notes: Point estimate with 90 and 95% confidence bands based on HAC standard errors.
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Four identification concerns
1. Omitted variable bias

– Temperature shocks may happen to coincide with adverse global economic shocks
2. Reverse causality

– Economic activity may lead to emissions and changes in temperature
3. External validity

– Estimates stable over time and by source of global temperature variation
4. Regional omitted variables

– Stable regardless of regional & country controls and weighting, no discernable pre-trends
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Accounting for concern #2: Reverse causality
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Notes: 90 and 95% confidence bands based on
Driscoll-Kraay SE.

• Control for reverse causality
– Feedback of GDP on T via emissions
– Climate models: CO2, CH4 and SO2

• Results virtually unchanged
– Emissions fluctuations too small
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Four identification concerns
1. Omitted variable bias

– Temperature shocks may happen to coincide with adverse global economic shocks
2. Reverse causality

– Economic activity may lead to emissions and changes in temperature
3. External validity

– Estimates stable over time and by source of global temperature variation
4. Regional omitted variables

– Stable regardless of regional & country controls and weighting, no discernable pre-trends
17



Global vs. local temperature shocks
• How do global temperature shocks compare to local country-level temperature shocks?

– Virtually all previous work uses local temperature shocks
• To maximize comparability, estimate responses using

– Same specification
– Same data

• Just replace global temperature shock with local temperature shock
yi ,t+h − yi ,t−1 = αi ,h + ( δt,h + ) θhT shock

i ,t + x′tβh + x′i ,tγh + εi ,t+h

– Without and with time fixed effects
18



Impact of global vs. local temperature shocks
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Notes: Point estimate with 90 and 95% confidence bands based on Driscoll-Kraay SE
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Why is global temperature different?

• Global temperature is a better summary statistic of state of climate system
• Integrates land and ocean surface temperatures, reflecting global energy balance
• Better captures the frequency, intensity, and distribution of extreme weather events
• Captures correlated nature of local shocks and spillovers
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Oceans drive global temperature effects
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Notes: joint estimation of the impact of ocean and land temperatures. 90 and 95% confidence intervals.
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Damaging extreme events correlate strongly with global temperature
(a) Extreme heat
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Extreme events lead to GDP damages
(a) Extreme heat
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Local extremes help close gap between global and local temperature
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Notes: predicted effect on GDP based on aggregating local impacts. Interact frequency response of extremes to global
temperature with estimated damages of extremes. 90 and 95% confidence intervals. 24



A simple climate-economy model
• Use the neoclassical growth model

– Damage function: temperature reduces aggregate productivity: Zt = Z0 exp
(∫ t

0
ζsT̂t−sds

)
– Includes lagged effects

• Estimate damage function by matching estimated output responses in the data
– Characterize identification in model
– Estimation accounts for internal persistence of temperature

• Use estimated model to perform counterfactual analyses and estimate SCC
– Consider business-as-usual scenario with additional 2°C warming by 2100
– Use climate sensitivity from state-of-the-art climate models
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Damage functions from global temperature shocks
(a) Temperature (b) Output

(c) Damage function {ζs}s (d) Capital
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The impact of climate change
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Sensitivity
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Updating damage estimates
• Global temperature shocks have large economic effects

– 1°C global temperature rise implies a 20% decline in world GDP vs. 3% for local
temperature

• Why? Geophysical explanation:
– Global temperature estimates driven by ocean temperature, not land temperature
– Global temp shocks predict damaging extreme events: explain 1/2 of direct estimate
– Local temperature shocks do not

• Global temperature shocks imply large SCC and welfare costs of climate change
– Use reduced-form impacts to estimate damage functions in IAM and infer long-run effects
– SCC ≥ $1,500/tCO2 for global temperature vs. ≈ $200/tCO2 for local temperature
– Adding 2°C to 2024 temperature by 2100 implies a 30% welfare loss
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Regional heterogeneity

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

Europe

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

North America

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

Central and East Asia

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

Oceania

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

Latin America

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

Middle East/North Africa

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

Southeast Asia

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

South Asia

-3
0

-2
0

-1
0

0
10

20

Pe
rc

en
t

0 2 4 6 8 10

Years

Sub-Saharan Africa

30



Estimating abatement costs



Carbon pricing across the globe

• Looming climate crisis put climate change at top of the global policy agenda
• Carbon pricing increasingly used as a tool to mitigate climate change but:
• Little known about effects on emissions and the economy in practice

– Effectiveness?
– Short-term economic costs?
– Distributional consequences?

• With >20 years of practical experience in carbon pricing, what does the data say?
31



Estimating the impacts of carbon pricing: Känzig (2025)
• Challenge: carbon prices are not set in a vacuum

– Policymakers respond to macroeconomic developments when deciding on climate policy
– Cap-and-trade prices are market prices driven by demand & supply

• Identification challenge more acute for cap-and-trade prices
• But: institutional features allow for credible identification of carbon price impacts

– Cap-and-trade regulates quantity, establishes market price for carbon
– Liquid futures markets on allowances
– Regulations in the market changed considerably over time
– Isolate exogenous variation by measuring carbon price change in tight window aroundpolicy events
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EU carbon price
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Regulatory events
• Collected comprehensive list of regulatory update events

– Decisions of European Commission
– Votes of European Parliament
– Judgments of European courts

• Of interest in this paper: regulatory news on the supply of allowances
– National allocation plans
– Auctions: timing and quantities
– Use of international credits

• Identified 114 relevant events from 2005-2019
34



High-frequency identification
• Idea: Identify carbon policy surprises from changes in EUA futures price in tight

window around regulatory event
CPSurprised =

F carbon
d − F carbon

d−1

Pelec
d−1

where Ft,d is log settlement price of the EUA front contract on event day d in month t

• Purge from potential predictability from macro- & financial variables, CPSurprise⊥
d

• Aggregate surprises to monthly series

CPSurprise⊥t =


CPSurprise⊥t,d if one event∑

i CPSurprise
⊥
t,di

if multiple events
0 if no event 35



Carbon policy surprises
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Econometric framework
• Carbon policy surprise series has good properties but still imperfect measure
⇒ Use it as an instrument to estimate dynamic causal effects on variables of interest

• For estimation I rely on VAR techniques given the short sample
• Identifying assumptions:

E[ztε1,t ] = α ̸= 0 (Relevance)
E[ztε2:n,t ] = 0, (Exogeneity)

ut = Sεt (Invertibility)
• Use carbon policy surprise series as external instrument for energy price
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The aggregate effects of carbon pricing

Notes: The solid line is the point estimate and the dark and light shaded areas are 68 and 90% confidence bands
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Revisiting marginal abatement cost

• Back-of-the-envelope estimate based on impulse responses gives MAC of ≈ €107/tCO2

• Higher than many engineering estimates & avg. ETS price over the sample ≈ €12/tCO2

– Market prices do not internalize GE effects via prices, consumption, employment
– Higher economy-wide costs of decarbonization

• Important implications for cost-benefit analyses

39



Updating cost-benefit analyses



Updating cost-benefit analyses: Bilal & Känzig (AEAPP, 2025)
• Most large-scale decarbonization policies in IRA cost ≈$80/tCO2 (Bistline et al. 2023)

– Below traditional worldwide SCC estimates, e.g. $200/tCO2 with local temperature
– But higher than US-only Domestic Cost of Carbon, e.g. $30/tCO2 with local temperature
– So unilateral, non-cooperative policy is not cost-effective

• Our estimates with global temperature entirely reverse this trade-off
– Even the US-only Domestic Cost of Carbon is ≥ $200/tCO2
– Higher than the cost of decarbonization
– So unilateral, non-cooperative decarbonization policy becomes cost-effective

• Under standard abatement cost curves implies ≥ 80% unilateral decarbonization in US and EU
40



Updating cost-benefit analyses: Bilal & Känzig (AEAPP, 2025)
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Conclusion

• Accounting for market-wide impacts, decarbonizing the economy is costly
• But inaction is way costlier
• SCC based on global temperature is ≥$1,500/tCO2 and welfare cost is 30%
• Magnitudes are comparable to a permanent 1929 Great Depression
• Imply that unilateral decarbonization policy is optimal
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Thank you!
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