Climate Damages and Decarbonization: An Updated Perspective on Benefits and Costs

IBRN Climate workshop

Diego R. Känzig Northwestern University, CEPR & NBER

October 2025

The state of climate-macro

The state of climate-macro

- The dominant approach to climate-macro has been structural
- Write down integrated assessment/computable general equilibrium models to study climate change and policy
 - Extremely important research agenda ⇒ how to jointly model climate & economy
 - Culminated in Nordhaus' Nobel Prize
- Key challenge: have to discipline key model parameters/objects
 - Climate damage function
 - Abatement cost function
 - Elasticity of substitution between inputs (different energy inputs, capital, labor)
 - ..

The state of climate-macro

- Influential literature has exploited variation at the micro level
 - Facilities, firms, regions, countries, ...
 - Credible identification, absorbing potential endogeneity using fixed effects
 - Great to study heterogeneity / speak to certain mechanisms
- But estimates micro-elasticities/relative effects \neq macro-elasticities/aggregate effects
 - ⇒ Missing intercept problem, abstracts from GE effects and spillovers
- In macro: Key object of interest are macro-elasticities
- · How do we arrive at these?

Bridging climate-micro and macro

- In short: need more structure...
- Dominant approach: write down structural model to map micro to macro effects
 - Either fully specified model or with sufficient statistics estimable from the data
 - But relies on stringent structural assumptions
- Alternative: exploit time-series variation to estimate aggregate effect
 - This approach has a lot of promise, especially in the climate/environment context
 - Why? Identifying macro shocks is difficult since policy and economy interact endogenously
 - Climate shocks are often more exogenous, making them easier to identify
 - Relies on much weaker structural assumptions
- This talk: showcase time-series approach to revisit cost-benefit analysis

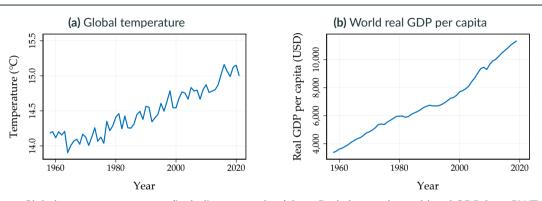
Outline of this talk

- 1. Estimating climate damages
- 2. Estimating abatement costs
- 3. Updating cost-benefit analyses

Estimating climate damages

Estimating climate damages: Bilal & Känzig (2025)

- Climate change is often portrayed as having major economic consequences
- Yet empirical estimates imply moderate 1-3% GDP loss per 1°C (Nordhaus 1992, Dell et al. 2012, Burke et al. 2015, Nath et al. 2023, Kotz et al. 2024)
- All focus on within-country, local temperature panel variation


Questions

- Are the economic consequences of climate change truly so small?
- Or is local temperature a partial representation of climate change?

Estimating climate damages: Bilal & Känzig (2025)

- We propose new focus on global temperature
- Key summary statistic of climate change, used by the IPCC
- Includes ocean surface temperature!
- Lots of time-series variation in global temperature unrelated to economic activity
 - Natural climate variability: El Niño, solar cycles, volcanic eruptions, ...
- What do we get from this approach?

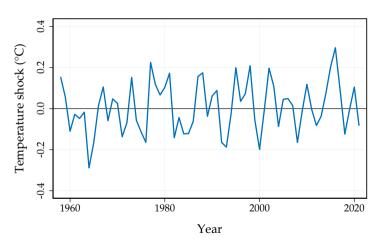
Global temperature and economic growth

Notes: Global average temperature (including sea surface) from Berkeley earth, world real GDP from PWT

- Global temperature and world GDP both trending up over our sample
- May bias estimated effects of temperature on output
- Focus on temperature shocks

Measuring temperature shocks and tracing their effects

- Use approach by Hamilton (2018) as in Nath et al. (2024) for local temperature
- Estimate innovation in global temperature process as forecast error


$$T_t^{\text{shock}} = T_t - (\hat{eta}_0 + \hat{eta}_1 T_{t-q} + \ldots + \hat{eta}_{p+1} T_{t-q-p}),$$

- Driven by solar cycles, volcanic eruptions, and internal climate variability (e.g. El Niño)
- Virtually identical results if use HP filter, etc.
- Estimate effects of global temperature shocks using local projections (Jordà et al. 2020)

$$y_{i,t+h} - y_{i,t-1} = \alpha_{i,h} + \theta_h T_t^{\text{shock}} + \mathbf{x}_t' \beta_h + \mathbf{x}_{i,t}' \gamma_h + \varepsilon_{i,t+h}$$

- $y_{i,t}$ is real GDP per capita of country i
- $\mathbf{x}_t, \mathbf{x}_{i,t}$ are vectors of global and country-level controls

Global temperature shocks

Notes: Global temperature shocks, computed using Hamilton filter with q=2, p=2.

The impact of a 1°C global temperature shock

Notes: 90 and 95% confidence bands. GDP per capita data: Penn World Tables for 173 countries, 1960-2019.

- Estimate effect of permanent 1°C rise as cumulative response ratio
- Corresponds to a 20% long-run reduction in world GDP per capita

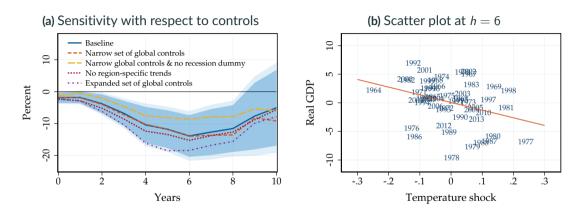
Four identification concerns

1. Omitted variable bias

- Temperature shocks may happen to coincide with adverse global economic shocks

2. Reverse causality

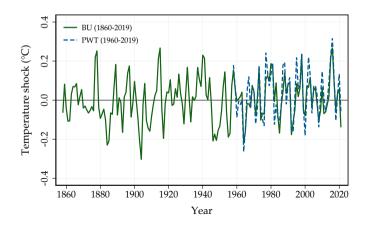
Economic activity may lead to emissions and changes in temperature

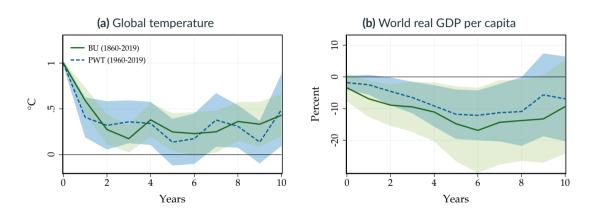

3. External validity

- Estimates stable over time and by source of global temperature variation

4. Regional omitted variables

- Stable regardless of regional & country controls and weighting, no discernable pre-trends


Accounting for concern #1: Omitted variable bias


Notes: 90 and 95% confidence bands based on Driscoll-Kraay SE. Baseline: two lags of global temperature shock, GDP, global oil prices and the US treasury yield, indicators for global economic recessions, region-specific trends.

Accounting for concern #1: Omitted variable bias

- Omitted variable bias more acute in shorter sample
- Revisit evidence in longer sample: 43 countries, 1860-2019

Accounting for concern #1: Omitted variable bias

Notes: Point estimate with 90 and 95% confidence bands based on HAC standard errors.

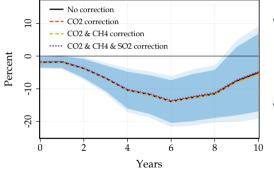
Four identification concerns

1. Omitted variable bias

- Temperature shocks may happen to coincide with adverse global economic shocks

2. Reverse causality

- Economic activity may lead to emissions and changes in temperature


External validity

Estimates stable over time and by source of global temperature variation

4. Regional omitted variables

Stable regardless of regional & country controls and weighting, no discernable pre-trends

Accounting for concern #2: Reverse causality

Notes: 90 and 95% confidence bands based on Driscoll-Kraay SE.

- Control for reverse causality
 - Feedback of GDP on T via emissions
 - Climate models: CO2, CH4 and SO2
- Results virtually unchanged
 - Emissions fluctuations too small

Four identification concerns

1. Omitted variable bias

- Temperature shocks may happen to coincide with adverse global economic shocks

2. Reverse causality

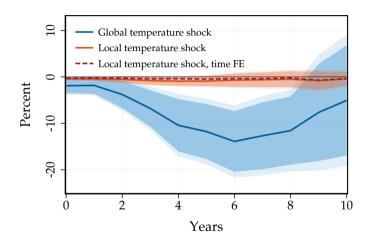
Economic activity may lead to emissions and changes in temperature

3. External validity

- Estimates stable over time and by source of global temperature variation

4. Regional omitted variables

- Stable regardless of regional & country controls and weighting, no discernable pre-trends

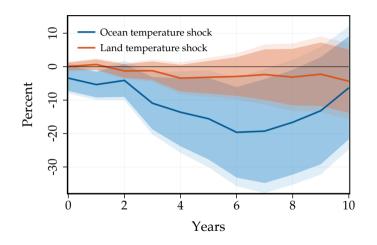

Global vs. local temperature shocks

- How do global temperature shocks compare to local country-level temperature shocks?
 - Virtually all previous work uses local temperature shocks
- To maximize comparability, estimate responses using
 - Same specification
 - Same data
- Just replace global temperature shock with local temperature shock

$$y_{i,t+h} - y_{i,t-1} = \alpha_{i,h} + (\delta_{t,h} +) \theta_h T_{i,t}^{\mathsf{shock}} + \mathsf{x}_t' \beta_h + \mathsf{x}_{i,t}' \gamma_h + \varepsilon_{i,t+h}$$

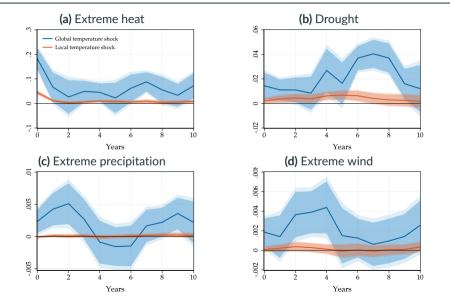
- Without and with time fixed effects

Impact of global vs. local temperature shocks

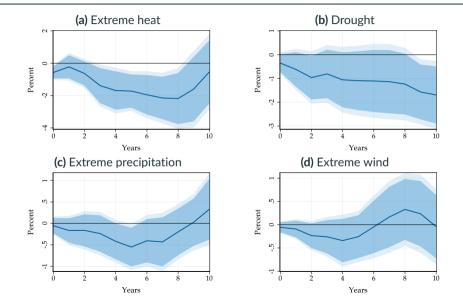


Notes: Point estimate with 90 and 95% confidence bands based on Driscoll-Kraay SE

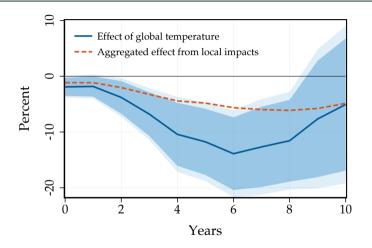
Why is global temperature different?


- Global temperature is a better summary statistic of state of climate system
- Integrates land and ocean surface temperatures, reflecting global energy balance
- Better captures the frequency, intensity, and distribution of extreme weather events
- Captures correlated nature of local shocks and spillovers

Oceans drive global temperature effects

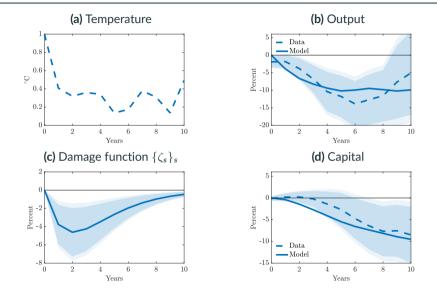


Notes: joint estimation of the impact of ocean and land temperatures. 90 and 95% confidence intervals.

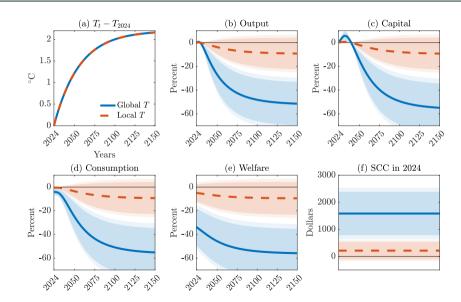

Damaging extreme events correlate strongly with global temperature

Extreme events lead to GDP damages

Local extremes help close gap between global and local temperature



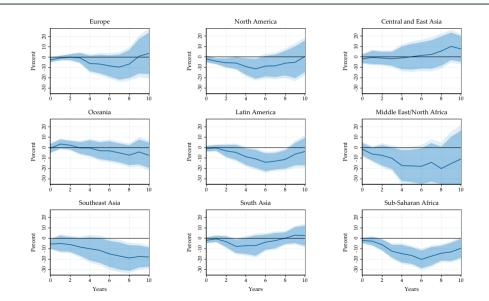
Notes: predicted effect on GDP based on aggregating local impacts. Interact frequency response of extremes to global temperature with estimated damages of extremes. 90 and 95% confidence intervals.


A simple climate-economy model

- Use the neoclassical growth model
 - Damage function: temperature reduces aggregate productivity: $\mathbf{Z_t} = Z_0 \exp\left(\int_0^t \zeta_s \hat{\mathbf{T}}_{t-s} ds\right)$
 - Includes lagged effects
- Estimate damage function by matching estimated output responses in the data
 - Characterize identification in model
 - Estimation accounts for internal persistence of temperature
- Use estimated model to perform counterfactual analyses and estimate SCC
 - Consider business-as-usual scenario with additional 2°C warming by 2100
 - Use climate sensitivity from state-of-the-art climate models


Damage functions from global temperature shocks

The impact of climate change

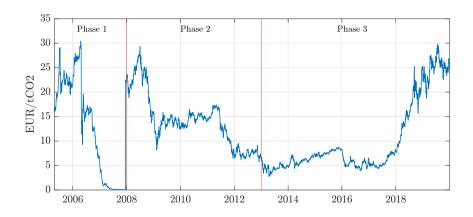

Sensitivity

Updating damage estimates

- Global temperature shocks have large economic effects
 - 1°C global temperature rise implies a 20% decline in world GDP vs. 3% for local temperature
- Why? Geophysical explanation:
 - Global temperature estimates driven by ocean temperature, not land temperature
 - Global temp shocks predict damaging extreme events: explain 1/2 of direct estimate
 - Local temperature shocks do not
- Global temperature shocks imply large SCC and welfare costs of climate change
 - Use reduced-form impacts to estimate damage functions in IAM and infer long-run effects
 - SCC \geq \$1,500/tCO2 for global temperature vs. \approx \$200/tCO2 for local temperature
 - Adding 2°C to 2024 temperature by 2100 implies a 30% welfare loss

Regional heterogeneity

Estimating abatement costs


Carbon pricing across the globe

- Looming climate crisis put climate change at top of the global policy agenda
- Carbon pricing increasingly used as a tool to mitigate climate change but:
- Little known about effects on emissions and the economy in practice
 - Effectiveness?
 - Short-term economic costs?
 - Distributional consequences?
- With >20 years of practical experience in carbon pricing, what does the data say?

Estimating the impacts of carbon pricing: Känzig (2025)

- Challenge: carbon prices are not set in a vacuum
 - Policymakers respond to macroeconomic developments when deciding on climate policy
 - Cap-and-trade prices are market prices driven by demand & supply
- Identification challenge more acute for cap-and-trade prices
- But: institutional features allow for credible identification of carbon price impacts
 - Cap-and-trade regulates quantity, establishes market price for carbon
 - Liquid **futures markets** on allowances
 - Regulations in the market **changed** considerably over time
 - Isolate exogenous variation by measuring carbon price change in tight window around policy events

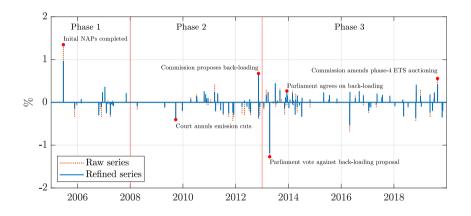
EU carbon price

Regulatory events

- Collected comprehensive list of regulatory update events
 - Decisions of European Commission
 - Votes of European Parliament
 - Judgments of European courts
- Of interest in this paper: regulatory news on the supply of allowances
 - National allocation plans
 - Auctions: timing and quantities
 - Use of international credits
- Identified 114 relevant events from 2005-2019

High-frequency identification

• Idea: Identify carbon policy surprises from changes in EUA futures price in tight window around regulatory event

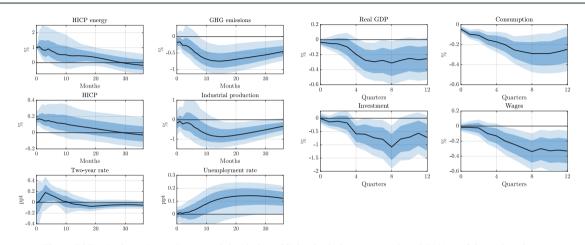

$$\mathsf{CPSurprise}_d = \frac{F_d^{\mathsf{carbon}} - F_{d-1}^{\mathsf{carbon}}}{P_{d-1}^{\mathsf{elec}}}$$

where $F_{t,d}$ is log settlement price of the EUA front contract on event day d in month t

- Purge from potential predictability from macro- & financial variables, CPSurprise $\frac{1}{d}$
- Aggregate surprises to monthly series

$$CPSurprise_t^{\perp} = egin{cases} CPSurprise_{t,d}^{\perp} & \text{if one event} \\ \sum_i CPSurprise_{t,d_i}^{\perp} & \text{if multiple events} \\ 0 & \text{if no event} \end{cases}$$

Carbon policy surprises


Econometric framework

- Carbon policy surprise series has good properties but still imperfect measure
 - ⇒ Use it as an instrument to estimate dynamic causal effects on variables of interest
- For estimation I rely on VAR techniques given the short sample
- Identifying assumptions:

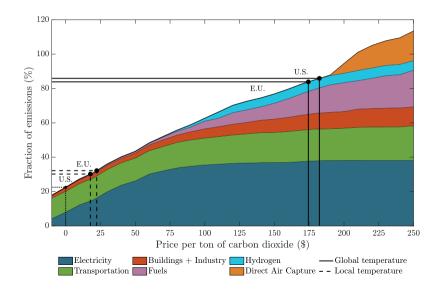
$$\mathbb{E}[z_t arepsilon_{1,t}] = lpha
eq 0$$
 (Relevance) $\mathbb{E}[z_t arepsilon_{2:n,t}] = \mathbf{0},$ (Exogeneity) $\mathbf{u}_t = \mathbf{S} arepsilon_t$ (Invertibility)

• Use carbon policy surprise series as external instrument for energy price

The aggregate effects of carbon pricing

Notes: The solid line is the point estimate and the dark and light shaded areas are 68 and 90% confidence bands

Revisiting marginal abatement cost


- Back-of-the-envelope estimate based on impulse responses gives MAC of \approx €107/tCO $_2$
- Higher than many engineering estimates & avg. ETS price over the sample \approx €12/tCO $_2$
 - Market prices do **not internalize** GE effects via prices, consumption, employment
 - Higher economy-wide costs of decarbonization
- Important implications for cost-benefit analyses

Updating cost-benefit analyses

Updating cost-benefit analyses: Bilal & Känzig (AEAPP, 2025)

- Most large-scale decarbonization policies in IRA cost ≈\$80/tCO2 (Bistline et al. 2023)
 - Below traditional worldwide SCC estimates, e.g. \$200/tCO2 with local temperature
 - But higher than US-only Domestic Cost of Carbon, e.g. \$30/tCO2 with local temperature
 - So unilateral, non-cooperative policy is not cost-effective
- Our estimates with global temperature entirely reverse this trade-off
 - Even the US-only Domestic Cost of Carbon is ≥ \$200/tCO2
 - Higher than the cost of decarbonization
 - So unilateral, non-cooperative decarbonization policy becomes cost-effective
 - ullet Under standard abatement cost curves implies $\geq 80\%$ unilateral decarbonization in US and EU

Updating cost-benefit analyses: Bilal & Känzig (AEAPP, 2025)

Conclusion

- Accounting for market-wide impacts, decarbonizing the economy is costly
- But inaction is way costlier
- SCC based on global temperature is \geq \$1,500/tCO2 and welfare cost is 30%
- Magnitudes are comparable to a permanent 1929 Great Depression
- Imply that unilateral decarbonization policy is optimal

Thank you!